1,184 research outputs found

    Comparison of rocket-borne probes for electron density measurements Quarterly status report no. 5, Aug. 1 - Oct. 31, 1965

    Get PDF
    Impedance, resonance, capacitance, electrostatic, and Langmuir probe performance for ionospheric electron density profil

    A radio continuum survey of edge-on spiral galaxies at 90 cm

    Get PDF
    Accurate spectral indices of the radio emission from both the thin disk and thick disk or halo components are critical to understanding the propagation mechanisms of electrons within spiral galaxies. The spectral indices give information of relative importance of diffusion and synchrotron energy loss in the propagation of electrons in the disk. Our goal of this survey is to locate a larger sample of spiral galaxies that exhibit halo phenomena so that a statistical analysis will be possible

    Integrins are not essential for entry of coxsackievirus A9 into SW480 human colon adenocarcinoma cells

    Get PDF
    Background: Coxsackievirus A9 (CV-A9) is a pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma cells by attaching to the aVβ6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD) motif, which is located at the exposed carboxy-terminus of the capsid protein VP1 in all studied clinical isolates. However, genetically-modified CV-A9 that lacks the RGD motif (CV-A9-RGDdel) has been shown to be infectious in some cell lines but not in A549, suggesting that RGD-mediated integrin binding is not always essential for efficient entry of CV-A9.   Methods: Two cell lines, A549 and SW480, were used in the study. SW480 was the study object for the integrin-independent entry and A549 was used as the control for integrin-dependent entry. Receptor levels were quantitated by cell sorting and quantitative PCR. Antibody blocking assay and siRNA silencing of receptor-encoding genes were used to block virus infection. Peptide phage display library was used to identify peptide binders to CV-A9. Immunofluorescence and confocal microscopy were used to visualize the virus infection in the cells.   Results: We investigated the receptor use and early stages of CV-A9 internalization to SW480 human epithelial colon adenocarcinoma cells. Contrary to A549 infection, we showed that both CV-A9 and CV-A9-RGDdel internalized into SW480 cells and that function-blocking anti-αV integrin antibodies had no effect on the binding and entry of CV-A9. Whereas siRNA silencing of β6 integrin subunit had no influence on virus infection in SW480, silencing of β2-microglobulin (b2M) inhibited the virus infection in both cell lines. By using a peptide phage display screening, the virus-binding peptide identical to the N-terminal sequence of HSPA5 protein was identified and shown to block the virus infection in both A549 and SW480 cell lines. HSPA5 was also found to co-localize with CV-A9 at the SW480 cell periphery during the early stages of infection by confocal microscopy.   Conclusions: The data suggest that while aVβ6 integrin is essential for CV-A9 in A549 cell line, it is not required in SW480 cell line in which β2M and HSPA5 alone are sufficient for CV-A9 infection. This suggests that the choice of CV-A9 receptor(s) is dependent on the tissue/cellular environment.</p

    Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells

    Get PDF
    Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization

    Spatially Resolved Chemistry in Nearby Galaxies I. The Center of IC 342

    Full text link
    We have imaged emission from the millimeter lines of eight molecules--C2H, C34S, N2H+, CH3OH, HNCO, HNC, HC3N, and SO--in the central half kpc of the nearby spiral galaxy IC 342. The 5" (~50 pc) resolution images were made with OVRO. Using these maps we obtain a picture of the chemistry within the nuclear region on the sizescales of individual GMCs. Bright emission is detected from all but SO. There are marked differences in morphology for the different molecules. A principal component analysis is performed to quantify similarities and differences among the images. This analysis reveals that while all molecules are to zeroth order correlated, that is, they are all found in dense molecular clouds, there are three distinct groups of molecules distinguished by the location of their emission within the nuclear region. N2H+, C18O, HNC and HCN are widespread and bright, good overall tracers of dense molecular gas. C2H and C34S, tracers of PDR chemistry, originate exclusively from the central 50-100 pc region, where radiation fields are high. The third group of molecules, CH3OH and HNCO, correlates well with the expected locations of bar-induced orbital shocks. The good correlation of HNCO with the established shock tracer molecule CH3OH is evidence that this molecule, whose chemistry has been uncertain, is indeed produced by processing of grains. HC3N is observed to correlate tightly with 3mm continuum emission, demonstrating that the young starbursts are the sites of the warmest and densest molecular gas. We compare our HNC images with the HCN images of Downes et al. (1992) to produce the first high resolution, extragalactic HCN/HNC map: the HNC/HCN ratio is near unity across the nucleus and the correlation of both of these gas tracers with the star formation is excellent. (Abridged).Comment: 54 pages including 10 figures and 8 tables. Accepted for publication in Ap

    The Effects of Genetic Background for Diurnal Preference on Sleep Development in Early Childhood

    Get PDF
    Purpose: No previous research has examined the impact of the genetic background of diurnal preference on children's sleep. Here, we examined the effects of genetic risk score for the liability of diurnal preference on sleep development in early childhood in two population-based cohorts from Finland.Participants and Methods: The primary sample (CHILD-SLEEP, CS) comprised 1420 infants (695 girls), and the replication sample (FinnBrain, FB; 962 girls) 2063 infants. Parent-reported sleep duration, sleep-onset latency and bedtime were assessed at three, eight, 18 and 24 months in CS, and at six, 12 and 24 months in FB. Actigraphy-based sleep latency and efficiency were measured in CS in 365 infants at eight months (168 girls), and in 197 infants at 24 months (82 girls). Mean standard scores for each sleep domain were calculated in both samples. Polygenic risk scores (PRS) were used to quantitate the genetic risk for eveningness (PRSBestFit) and momingness (PRS10kBest).Results: PRSBestFit associated with longer sleep-onset latency and later bedtime, and PRS10kBest related to shorter sleep-onset latency in CS. The link between genetic risk for diurnal preference and sleep-onset latency was replicated in FB, and meta-analysis resulted in associations (P<0.0005) with both PRS-values (PRSBestFit: Z=3.55; and PRS10kBest: Z= -3.68). Finally, PRSBestFit was related to actigraphy-based lower sleep efficiency and longer sleep latency at eight months.Conclusion: Genetic liability to diurnal preference for eveningness relates to longer sleeponset during the first two years of life, and to objectively measured lowered sleep efficiency. These findings enhance our understanding on the biological factors affecting sleep development, and contribute to clarify the physiological sleep architecture in early childhood

    The Presence and Severity of Chronic Kidney Disease Predicts All-Cause Mortality in Type 1 Diabetes

    Get PDF
    OBJECTIVES: This study aimed to identify clinical features associated with premature mortality in a large contemporary cohort of adults with type 1 diabetes. RESEARCH DESIGN AND METHODS: The Finnish Diabetic Nephropathy (FinnDiane) study is a national multicenter prospective follow-up study of 4,201 adults with type 1 diabetes from 21 university and central hospitals, 33 district hospitals, and 26 primary health care centers across Finland. RESULTS: During a median 7 years of follow-up, there were 291 deaths (7%), 3.6-fold (95% CI 3.2-4.0) more than that observed in the age- and sex-matched general population. Excess mortality was only observed in individuals with chronic kidney disease. Individuals with normoalbuminuria showed no excess mortality beyond the general population (standardized mortality ratio [SMR] 0.8, 95% CI 0.5-1.1), independent of the duration of diabetes. The presence of microalbuminuria, macroalbuminuria, and end-stage kidney disease was associated with 2.8, 9.2, and 18.3 times higher SMR, respectively. The increase in mortality across each stage of albuminuria was equivalent to the risk conferred by preexisting macrovascular disease. In addition, the glomerular filtration rate was independently associated with mortality, such that individuals with impaired kidney function, as well as those demonstrating hyperfiltration, had an increased risk of death. CONCLUSIONS: An independent graded association was observed between the presence and severity of kidney disease and mortality in a large contemporary cohort of individuals with type 1 diabetes. These findings highlight the clinical and public health importance of chronic kidney disease and its prevention in the management of type 1 diabetes

    Effect of Parental Type 2 Diabetes on Offspring With Type 1 Diabetes

    Get PDF
    OBJECTIVE—The purpose of this study was to study the association between a parental history of type 2 diabetes and the metabolic profile as well as the presence of the metabolic syndrome and diabetes complications in patients with type 1 diabetes
    corecore