63 research outputs found

    Pioglitazone Prevents Capillary Rarefaction in Streptozotocin-Diabetic Rats Independently of Glucose Control and Vascular Endothelial Growth Factor Expression

    Get PDF
    Background/Aims: Reduction of capillary network density occurs early in the development of metabolic syndrome and may be relevant for the precipitation of diabetes. Agonists of the peroxisome proliferator-activated receptor (PPAR)-gamma transcription factor are vasculoprotective, but their capacity for structural preservation of the microcirculation is unclear. Methods: Male Wistar rats were rendered diabetic by streptozotocin and treated with pioglitazone in chow for up to 12 weeks. Capillary density was determined in heart and skeletal muscle after platelet endothelial cell adhesion molecule-1 (PECAM-1) immunostaining. Hallmarks of apoptosis and angiogenesis were determined. Results: Capillary density deteriorated progressively in the presence of hyperglycemia (from 971/mm(2) to 475/mm(2) in quadriceps muscle during 13 weeks). Pioglitazone did not influence plasma glucose, left ventricular weight, or body weight but nearly doubled absolute and relative capillary densities compared to untreated controls (1.2 vs. 0.6 capillaries/myocyte in heart and 1.5 vs. 0.9 capillaries/myocyte in quadriceps muscle) after 13 weeks of diabetes. No antiapoptotic or angiogenic influence of pioglitazone was detected while a reduced expression of hypoxia-inducible factor-3 alpha and PPAR coactivator-1 alpha (PGC-1 alpha) mRNA as well as vascular endothelial growth factor (VEGF) protein possibly occurred as a consequence of improved vascularization. Conclusion: Pioglitazone preserves microvascular structure in diabetes independently of improvements in glycemic control and by a mechanism unrelated to VEGF-mediated angiogenesis. Copyright (C) 2012 S. Karger AG, Base

    Beta-Carotene Reduces Body Adiposity of Mice via BCMO1

    Get PDF
    Evidence from cell culture studies indicates that β-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15′-oxygenase (Bcmo1) and the BC-9′,10′-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10′-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1-/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1-/- mice showed increased expression of Bcdo2 in adipocytes and β-10′-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10′-apocarotenoid production, this effect of BC was absent in Bcmo1-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocyte

    Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen.

    No full text
    Zucker diabetic fat (ZDF) rats with the metabolic syndrome and hyperlipidemia develop focal and segmental sclerosis. The role of oxidative and nitrosative stress in the nephropathy in ZDF was studied. Renal histology, function, and immunohistologic and biochemical parameters of oxidative and nitrosative stress were evaluated at 8 and 22 wk of age in ZDF and Zucker lean (ZL) rats and after chronic treatment with ebselen, an antioxidant and peroxinitrite scavenger. At 8 wk, ZDF rats showed hyperglycemia, no proteinuria or nephropathy, but higher levels of dihydrobiopterin and 3-nitrotyrosine (3-NT)-modified proteins compared with age-matched ZL rats. At 22 wk, ZDF rats developed focal and segmental sclerosis, proteinuria, decreased creatinine clearance, and renal tissue levels of glutathione and tetrahydrobiopterin with further elevation in dihydrobiopterin and 3-NT-modified proteins, in contrast to age-matched ZL rats. Renal immunohistologic expression of lipid peroxidation products and 3-NT-modified proteins also increased in 22-wk-old ZDF but not in ZL rats. Chronic ebselen treatment of ZDF rats restored renal tissue levels of glutathione and tetrahydrobiopterin; prevented significant accumulation of dihydrobiopterin, lipid peroxidation products, and 3-NT-modified proteins; and ameliorated focal and segmental sclerosis, proteinuria, and fall in creatinine clearance without affecting mean BP, body weight, and blood glucose, compared with the untreated ZDF rats. Chronic ebselen therapy also ameliorated vasculopathy with lipid deposits and tubulointerstitial scarring, inflammation, and upregulated alpha-smooth muscle actin expression. These findings suggest that ZDF rats develop a progressive nephropathy with glomerular, vascular, and tubulointerstitial pathology. Oxidative and nitrosative stress predates the nephropathy, which is improved by peroxinitrite scavenger ebselen, and thus considered its cause and not consequence

    Prevention and reversal of premature endothelial cell senescence and vasculopathy in obesity-induced diabetes by ebselen.

    No full text
    Although the accelerated atherosclerosis and premature aging of the cardiovascular system in patients with metabolic syndrome have been appreciated, the mechanisms of their development and potential therapeutic interventions remain unresolved. Our previous studies implicated advanced glycosylation end products in development of premature senescence preventable with a peroxynitrite scavenger, ebselen. Therefore, the effect of ebselen on endothelial senescence and vasculopathy in a model of metabolic syndrome--Zucker diabetic rats (ZDF)--was investigated. Ebselen decreased the abundance of 3-nitrotyrosine-modified proteins in ZDF rats. A 6-fold increase in the number of senescent endothelial cells in 22-week-old ZDF was prevented by ebselen. Development of vasculopathy, as collectively judged by the acetylcholine-induced vasorelaxation, NO production, angiogenic competence, and number of circulating microparticles, was almost completely prevented when ebselen was administered from 8 to 22 weeks and partially reversed when the treatment interval was 13 to 22 weeks. In conclusion, premature senescence of endothelial cells is progressively rampant in ZDF rats and is associated with the signs of severe vasculopathy. In addition, prevention of premature senescence of vascular endothelium through controlled decrease in nitrotyrosine formation was chronologically associated with the amelioration of vasculopathy, lending support to the idea of the pathogenetic role of premature senescence of endothelial cells in diabetic macrovasculopathy

    The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells.

    No full text
    Adipose tissue expansion involves the enlargement of existing adipocytes, the formation of new cells from committed preadipocytes, and the coordinated development of the tissue vascular network. Here we find that murine endothelial cells (ECs) of classic white and brown fat depots share ultrastructural characteristics with pericytes, which are pluripotent and can potentially give rise to preadipocytes. Lineage tracing experiments using the VE-cadherin promoter reveal localization of reporter genes in ECs and also in preadipocytes and adipocytes of white and brown fat depots. Furthermore, capillary sprouts from human adipose tissue, which have predominantly EC characteristics, are found to express Zfp423, a recently identified marker of preadipocyte determination. In response to PPAR gamma activation, endothelial characteristics of sprouting cells are progressively lost, and cells form structurally and biochemically defined adipocytes. Together these data support an endothelial origin of murine and human adipocytes, suggesting a model for how adipogenesis and angiogenesis are coordinated during adipose tissue expansion

    The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells.

    No full text
    Adipose tissue expansion involves the enlargement of existing adipocytes, the formation of new cells from committed preadipocytes, and the coordinated development of the tissue vascular network. Here we find that murine endothelial cells (ECs) of classic white and brown fat depots share ultrastructural characteristics with pericytes, which are pluripotent and can potentially give rise to preadipocytes. Lineage tracing experiments using the VE-cadherin promoter reveal localization of reporter genes in ECs and also in preadipocytes and adipocytes of white and brown fat depots. Furthermore, capillary sprouts from human adipose tissue, which have predominantly EC characteristics, are found to express Zfp423, a recently identified marker of preadipocyte determination. In response to PPAR\u3b3 activation, endothelial characteristics of sprouting cells are progressively lost, and cells form structurally and biochemically defined adipocytes. Together these data support an endothelial origin of murine and human adipocytes, suggesting a model for how adipogenesis and angiogenesis are coordinated during adipose tissue expansion
    • …
    corecore