217 research outputs found
The capability of the existing network of installations for detecting the antineutrino burst from collapsing stars
As the neutrino fluxes can bring information from the internal layers of the collapsing star, the problem of the neutrino burst detection is of importance for both the direct registering of the collapse itself and the investigation of its dynamics. The main characteristics of the neutrino fluxes have been obtained by simulations. The total neutrino flux energy is estimated as 2.5 x 10 to the 53 to 1.4 x 10 to the 54 erg, the energy of NU sub E flux being 10 to the 53 erg. Predictions on neutrino energy spectra are quite different. Two models of the collapse will be used: the model by Bowers and Wilson, hereafter BW, and the model by Nadyozhin and Otroschenko (NO). The NU sub e spectrum in the BW-model reaches the maximum at E max sub NU = 8 MeV. Average energy of NU sub E E sub nu approx. = 10 MeV. The NO-model gives E max sub Nu = 10.5 MeV and E sub nu = 12.6 MeV. The NU sub E-burst duration is DELTA tau sub NU = 20s for the NO-model. As the black hole formation is the result of the star collapse in the BW-model, DELTA tau sub nu is taken to be 5s
Muon pair production by muons and narrow muon bundles underground
We consider the process of muon pair production by
high-energy muons and its consequences for the characteristics of muon flux underground. It is shown that
the accounting of this process in the muon propagation through the rock results in an additional flux of narrow double- and triple-muon events which is comparable to the
conventional flux of narrow muon bundles with low multiplicity
Role of the electromagnetic processes in the high-energy muon production
The muon pair production by gammas in the atmosphere is discussed as a mechanism of “prompt” muon production at very high energies. It is shown that this process dominates over the conventional muon production through pion and kaon decay at energies greater than several PeV
Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors
While cosmic ray muons themselves are relatively easy to veto in underground
detectors, their interactions with nuclei create more insidious backgrounds
via: (i) the decays of long-lived isotopes produced by muon-induced spallation
reactions inside the detector, (ii) spallation reactions initiated by fast
muon-induced neutrons entering from outside the detector, and (iii) nuclear
recoils initiated by fast muon-induced neutrons entering from outside the
detector. These backgrounds, which are difficult to veto or shield against, are
very important for solar, reactor, dark matter, and other underground
experiments, especially as increased sensitivity is pursued. We used fluka to
calculate the production rates and spectra of all prominent secondaries
produced by cosmic ray muons, in particular focusing on secondary neutrons, due
to their importance. Since the neutron spectrum is steeply falling, the total
neutron production rate is sensitive just to the relatively soft neutrons, and
not to the fast-neutron component. We show that the neutron spectrum in the
range between 10 and 100 MeV can instead be probed by the (n, p)-induced
isotope production rates 12C(n, p)12B and 16O(n, p)16N in oil- and water-based
detectors. The result for 12B is in good agreement with the recent KamLAND
measurement. Besides testing the calculation of muon secondaries, these results
are also of practical importance, since 12B (T1/2 = 20.2 ms, Q = 13.4 MeV) and
16N (T1/2 = 7.13 s, Q = 10.4 MeV) are among the dominant spallation backgrounds
in these detectors
The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory
A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed
On-line recognition of supernova neutrino bursts in the LVD detector
In this paper we show the capabilities of the Large Volume Detector (INFN
Gran Sasso National Laboratory) to identify a neutrino burst associated to a
supernova explosion, in the absence of an "external trigger", e.g., an optical
observation. We describe how the detector trigger and event selection have been
optimized for this purpose, and we detail the algorithm used for the on-line
burst recognition. The on-line sensitivity of the detector is defined and
discussed in terms of supernova distance and electron anti-neutrino intensity
at the source.Comment: Accepted for pubblication on Astroparticle Physics. 13 pages, 10
figure
First CNGS events detected by LVD
The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy,
wide band beam at CERN and send it toward the INFN Gran Sasso
National Laboratory (LNGS), 732 km away. Its main goal is the observation of
the appearance, through neutrino flavour oscillation. The beam
started its operation in August 2006 for about 12 days: a total amount of
protons were delivered to the target. The LVD detector, installed
in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos,
was fully operating during the whole CNGS running time. A total number of 569
events were detected in coincidence with the beam spill time. This is in good
agreement with the expected number of events from Montecarlo simulations.Comment: Accepted for publication by the European Physical Journal C ; 7
pages, 11 figure
Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos
Several possible background sources determine the detectability of pep and
CNO solar neutrinos in organic liquid scintillator detectors. Among such
sources, the cosmogenic 11C nuclide plays a central role. 11C is produced
underground in reactions induced by the residual cosmic muon flux. Experimental
data available for the effective cross section for 11C by muons indicate that
11C will be the dominant source of background for the observation of pep and
CNO neutrinos. 11C decays are expected to total a rate 2.5 (20) times higher
than the combined rate of pep and CNO neutrinos in Borexino (KamLAND) in the
energy window preferred for the pep measurement, between 0.8 and 1.3 MeV.
This study examines the production mechanism of 11C by muon-induced showers
in organic liquid scintillators with a novel approach: for the first time, we
perform a detailed ab initio calculation of the production of a cosmogenic
nuclide, 11C, taking into consideration all relevant production channels.
Results of the calculation are compared with the effective cross sections
measured by target experiments in muon beams.
This paper also discusses a technique for reduction of background from 11C in
organic liquid scintillator detectors, which allows to identify on a one-by-one
basis and remove from the data set a large fraction of 11C decays. The
background reduction technique hinges on an idea proposed by Martin Deutsch,
who suggested that a neutron must be ejected in every interaction producing a
11C nuclide from 12C. 11C events are tagged by a three-fold coincidence with
the parent muon track and the subsequent neutron capture on protons.Comment: 11 pages, 6 figures; added one section detailing comparison with
previous estimates; added reference
- …