10,105 research outputs found
Floppy modes and non-affine deformations in random fiber networks
We study the elasticity of random fiber networks. Starting from a microscopic
picture of the non-affine deformation fields we calculate the macroscopic
elastic moduli both in a scaling theory and a self-consistent effective medium
theory. By relating non-affinity to the low-energy excitations of the network
(``floppy-modes'') we achieve a detailed characterization of the non-affine
deformations present in fibrous networks.Comment: 4 pages, 2 figures, new figure
Stiff Polymers, Foams and Fiber Networks
We study the elasticity of fibrous materials composed of generalized stiff
polymers. It is shown that in contrast to cellular foam-like structures affine
strain fields are generically unstable. Instead, a subtle interplay between the
architecture of the network and the elastic properties of its building blocks
leads to intriguing mechanical properties with intermediate asymptotic scaling
regimes. We present exhaustive numerical studies based on a finite element
method complemented by scaling arguments.Comment: 4 pages, 5 figure
High-resolution radio imaging of two luminous quasars beyond redshift 4.5
Context. Radio-loud active galactic nuclei in the early Universe are rare.
The quasars J0906+6930 at redshift z=5.47 and J2102+6015 at z=4.57 stand out
from the known sample with their compact emission on milliarcsecond (mas)
angular scale with high (0.1-Jy level) flux densities measured at GHz radio
frequencies. This makes them ideal targets for very long baseline
interferometry (VLBI) observations. Aims. By means of VLBI imaging we can
reveal the inner radio structure of quasars and model their brightness
distribution to better understand the geometry of the jet and the physics of
the sources. Methods. We present sensitive high-resolution VLBI images of
J0906+6930 and J2102+6015 at two observing frequencies, 2.3 and 8.6 GHz. The
data were taken in an astrometric observing programme involving a global
five-element radio telescope array. We combined the data from five different
epochs from 2017 February to August. Results. For one of the highest redshift
blazars known, J0906+6930, we present the first-ever VLBI image obtained at a
frequency below 8 GHz. Based on our images at 2.3 and 8.6 GHz, we confirm that
this source has a sharply bent helical inner jet structure within ~3 mas from
the core. The quasar J2102+6015 shows an elongated radio structure in the
east-west direction within the innermost ~2 mas that can be described with a
symmetric three-component brightness distribution model at 8.6 GHz. Because of
their non-pointlike mas-scale structure, these sources are not ideal as
astrometric reference objects. Our results demonstrate that VLBI observing
programmes conducted primarily with astrometric or geodetic goals can be
utilized for astrophysical purposes as well.Comment: 8 pages, 3 figures, accepted for publication in Astronomy &
Astrophysic
Mechanics of bundled semiflexible polymer networks
While actin bundles are used by living cells for structural fortification,
the microscopic origin of the elasticity of bundled networks is not understood.
Here, we show that above a critical concentration of the actin binding protein
fascin, a solution of actin filaments organizes into a pure network of bundles.
While the elasticity of weakly crosslinked networks is dominated by the affine
deformation of tubes, the network of bundles can be fully understood in terms
of non-affine bending undulations.Comment: 5 pages, 3 figures, final version as publishe
Microtubule dynamics depart from wormlike chain model
Thermal shape fluctuations of grafted microtubules were studied using high
resolution particle tracking of attached fluorescent beads. First mode
relaxation times were extracted from the mean square displacement in the
transverse coordinate. For microtubules shorter than 10 um, the relaxation
times were found to follow an L^2 dependence instead of L^4 as expected from
the standard wormlike chain model. This length dependence is shown to result
from a complex length dependence of the bending stiffness which can be
understood as a result of the molecular architecture of microtubules. For
microtubules shorter than 5 um, high drag coefficients indicate contributions
from internal friction to the fluctuation dynamics.Comment: 4 pages, 4 figures. Updated content, added reference, corrected typo
Entropic forces generated by grafted semiflexible polymers
The entropic force exerted by the Brownian fluctuations of a grafted
semiflexible polymer upon a rigid smooth wall are calculated both analytically
and by Monte Carlo simulations. Such forces are thought to play an important
role for several cellular phenomena, in particular, the physics of
actin-polymerization-driven cell motility and movement of bacteria like
Listeria. In the stiff limit, where the persistence length of the polymer is
larger than its contour length, we find that the entropic force shows scaling
behavior. We identify the characteristic length scales and the explicit form of
the scaling functions. In certain asymptotic regimes we give simple analytical
expressions which describe the full results to a very high numerical accuracy.
Depending on the constraints imposed on the transverse fluctuations of the
filament there are characteristic differences in the functional form of the
entropic forces; in a two-dimensional geometry the entropic force exhibits a
marked peak.Comment: 21 pages, 18 figures, minor misprints correcte
Statics and Dynamics of the Wormlike Bundle Model
Bundles of filamentous polymers are primary structural components of a broad
range of cytoskeletal structures, and their mechanical properties play key
roles in cellular functions ranging from locomotion to mechanotransduction and
fertilization. We give a detailed derivation of a wormlike bundle model as a
generic description for the statics and dynamics of polymer bundles consisting
of semiflexible polymers interconnected by crosslinking agents. The elastic
degrees of freedom include bending as well as twist deformations of the
filaments and shear deformation of the crosslinks. We show that a competition
between the elastic properties of the filaments and those of the crosslinks
leads to renormalized effective bend and twist rigidities that become
mode-number dependent. The strength and character of this dependence is found
to vary with bundle architecture, such as the arrangement of filaments in the
cross section and pretwist. We discuss two paradigmatic cases of bundle
architecture, a uniform arrangement of filaments as found in F-actin bundles
and a shell-like architecture as characteristic for microtubules. Each
architecture is found to have its own universal ratio of maximal to minimal
bending rigidity, independent of the specific type of crosslink induced
filament coupling; our predictions are in reasonable agreement with available
experimental data for microtubules. Moreover, we analyze the predictions of the
wormlike bundle model for experimental observables such as the tangent-tangent
correlation function and dynamic response and correlation functions. Finally,
we analyze the effect of pretwist (helicity) on the mechanical properties of
bundles. We predict that microtubules with different number of protofilaments
should have distinct variations in their effective bending rigidity
Stability of Localized Wave Fronts in Bistable Systems
Localized wave fronts are a fundamental feature of biological systems from cell biology to ecology. Here, we study a broad class of bistable models subject to self-activation, degradation, and spatially inhomogeneous activating agents. We determine the conditions under which wave-front localization is possible and analyze the stability thereof with respect to extrinsic perturbations and internal noise. It is found that stability is enhanced upon regulating a positional signal and, surprisingly, also for a low degree of binding cooperativity. We further show a contrasting impact of self-activation to the stability of these two sources of destabilization. DOI: 10.1103/PhysRevLett.110.03810
Disruptive and Nondisruptive Selection for Bulk Oat Populations
A mixture of F3 seeds from 75 oat crosses was divided into four lots, with one being propagated in central Iowa for nine generations (i.e., stationary line of descent) and three being propagated in a rotational pattern in central, southern, and northern Iowa in successive generations (i.e., disruptively selected line of descent). An evaluation experiment was conducted to test whether any changes in genotypic frequencies were caused by the two propagation procedures. Increases in the means of yield traits occurred, but the magnitude and timing of the changes varied among lines of descent. The changes in the stationary and rotational lines of descent were indistinguishable. There was some trend for reduced genotypic variances for most traits with advancing generations. Probably the disruptive selection scheme did not cause differential results from the stationary one because the selection pressure due to differences in propagation sites was mild relative to the pressure due to differences in weather patterns during the years of the propagation period
- …