465 research outputs found

    Resonantly enhanced filamentation in gases

    Full text link
    In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses

    Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses

    Full text link
    We show that a linear molecule subjected to a short specific elliptically polarized laser field yields postpulse revivals exhibiting alignment alternatively located along the orthogonal axis and the major axis of the ellipse. The effect is experimentally demonstrated by measuring the optical Kerr effect along two different axes. The conditions ensuring an optimal field-free alternation of high alignments along both directions are derived.Comment: 5 pages, 4 color figure

    Orientation and Alignment Echoes

    Full text link
    We present what is probably the simplest classical system featuring the echo phenomenon - a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation/alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_2 molecules excited by a pair of femtosecond laser pulses

    Higher-order Kerr terms allow ionization-free filamentation in gases

    Full text link
    We show that higher-order nonlinear indices (n4n_4, n6n_6, n8n_8, n10n_{10}) provide the main defocusing contribution to self-channeling of ultrashort laser pulses in air and Argon at 800 nm, in contrast with the previously accepted mechanism of filamentation where plasma was considered as the dominant defocusing process. Their consideration allows to reproduce experimentally observed intensities and plasma densities in self-guided filaments.Comment: 11 pages, 6 figures (11 panels

    Spectral dependence of purely-Kerr driven filamentation in air and argon

    Full text link
    Based on numerical simulations, we show that higher-order nonlinear indices (up to n8n_8 and n10n_{10}, respectively) of air and argon have a dominant contribution to both focusing and defocusing in the self-guiding of ultrashort laser pulses over most of the spectrum. Plasma generation and filamentation are therefore decoupled. As a consequence, ultraviolet wavelength may not be the optimal wavelengths for applications requiring to maximize ionization.Comment: 14 pages, 4 figures (14 panels
    • …
    corecore