304 research outputs found

    Characterization of growth and metabolism of the haloalkaliphile Natronomonas pharaonis

    Get PDF
    Natronomonas pharaonis is an archaeon adapted to two extreme conditions: high salt concentration and alkaline pH. It has become one of the model organisms for the study of extremophilic life. Here, we present a genome-scale, manually curated metabolic reconstruction for the microorganism. The reconstruction itself represents a knowledge base of the haloalkaliphile's metabolism and, as such, would greatly assist further investigations on archaeal pathways. In addition, we experimentally determined several parameters relevant to growth, including a characterization of the biomass composition and a quantification of carbon and oxygen consumption. Using the metabolic reconstruction and the experimental data, we formulated a constraints-based model which we used to analyze the behavior of the archaeon when grown on a single carbon source. Results of the analysis include the finding that Natronomonas pharaonis, when grown aerobically on acetate, uses a carbon to oxygen consumption ratio that is theoretically near-optimal with respect to growth and energy production. This supports the hypothesis that, under simple conditions, the microorganism optimizes its metabolism with respect to the two objectives. We also found that the archaeon has a very low carbon efficiency of only about 35%. This inefficiency is probably due to a very low P/O ratio as well as to the other difficulties posed by its extreme environment

    Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum

    Get PDF
    Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly "greedy" behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable

    Identification of a Sex Pheromone Produced by Sternal Glands in Females of the Caddisfly Molanna angustata Curtis

    Get PDF
    In the caddisfly Molanna angustata, females produce a sex pheromone in glands with openings on the fifth sternite. Gas chromatographic analyses of pheromone gland extracts with electroantennographic detection revealed four major compounds that stimulated male antennae. These compounds were identified by means of gas chromatography–mass spectrometry and enantioselective gas chromatography as heptan-2-one, (S)-heptan-2-ol, nonan-2-one, and (S)-nonan-2-ol in the approximate ratio of 1:1:4:10, respectively. Field tests showed that the mixture of the two alcohols was attractive to males whereas addition of the corresponding ketones reduced trap catches. The sex pheromone of M. angustata, a species in the family Molannidae within the suborder Integripalpia, is similar to the pheromones or pheromone-like compounds previously reported from six other trichopteran families, including members of the basal suborder Annulipalpia. This suggests that minimal evolutionary change of the pheromone chemistry has taken place within the leptoceroid branch of integripalpian Trichoptera compared to the ancestral character state

    A Parsimony Approach to Biological Pathway Reconstruction/Inference for Genomes and Metagenomes

    Get PDF
    A common biological pathway reconstruction approach—as implemented by many automatic biological pathway services (such as the KAAS and RAST servers) and the functional annotation of metagenomic sequences—starts with the identification of protein functions or families (e.g., KO families for the KEGG database and the FIG families for the SEED database) in the query sequences, followed by a direct mapping of the identified protein families onto pathways. Given a predicted patchwork of individual biochemical steps, some metric must be applied in deciding what pathways actually exist in the genome or metagenome represented by the sequences. Commonly, and straightforwardly, a complete biological pathway can be identified in a dataset if at least one of the steps associated with the pathway is found. We report, however, that this naïve mapping approach leads to an inflated estimate of biological pathways, and thus overestimates the functional diversity of the sample from which the DNA sequences are derived. We developed a parsimony approach, called MinPath (Minimal set of Pathways), for biological pathway reconstructions using protein family predictions, which yields a more conservative, yet more faithful, estimation of the biological pathways for a query dataset. MinPath identified far fewer pathways for the genomes collected in the KEGG database—as compared to the naïve mapping approach—eliminating some obviously spurious pathway annotations. Results from applying MinPath to several metagenomes indicate that the common methods used for metagenome annotation may significantly overestimate the biological pathways encoded by microbial communities

    Circadian Rhythm-Dependent Alterations of Gene Expression in Drosophila Brain Lacking Fragile X Mental Retardation Protein

    Get PDF
    Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP). The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs), and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281) with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s) underlying the altered circadian rhythms associated with loss of dFmr1

    Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

    Get PDF
    Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the Cadophora-Mollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.Peer reviewe

    The Cosmic-Ray antiproton flux between 3 and 49 GeV

    Full text link
    We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98 which was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. The RICH detector was the first ever flown capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identified with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.Comment: 39 pages, 11 Postscript figures, uses AAS LATEX style; changes in sections 3.1.1, 3.3, 3.4 and 6, Figure 8 modified, 2 figures added, typos correcte

    Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MeCP2, methyl-CpG-binding protein 2, binds to methylated cytosines at CpG dinucleotides, as well as to unmethylated DNA, and affects chromatin condensation. <it>MECP2 </it>mutations in females lead to Rett syndrome, a neurological disorder characterized by developmental stagnation and regression, loss of purposeful hand movements and speech, stereotypic hand movements, deceleration of brain growth, autonomic dysfunction and seizures. Most mutations occur <it>de novo </it>during spermatogenesis. Located at Xq28, <it>MECP2 </it>is subject to X inactivation, and affected females are mosaic. Rare hemizygous males suffer from a severe congenital encephalopathy.</p> <p>Methods</p> <p>To identify the pathways mis-regulated by MeCP2 deficiency, microarray-based global gene expression studies were carried out in cerebellum of <it>Mecp2 </it>mutant mice. We compared transcript levels in mutant/wildtype male sibs of two different MeCP2-deficient mouse models at 2, 4 and 8 weeks of age. Increased transcript levels were evaluated by real-time quantitative RT-PCR. Chromatin immunoprecipitation assays were used to document <it>in vivo </it>MeCP2 binding to promoter regions of candidate target genes.</p> <p>Results</p> <p>Of several hundred genes with altered expression levels in the mutants, twice as many were increased than decreased, and only 27 were differentially expressed at more than one time point. The number of misregulated genes was 30% lower in mice with the exon 3 deletion (<it>Mecp2</it><sup>tm1.1Jae</sup>) than in mice with the larger deletion (<it>Mecp2</it><sup>tm1.1Bird</sup>). Between the mutants, few genes overlapped at each time point. Real-time quantitative RT-PCR assays validated increased transcript levels for four genes: <it>Irak1</it>, interleukin-1 receptor-associated kinase 1; <it>Fxyd1</it>, phospholemman, associated with Na, K-ATPase;<it>Reln</it>, encoding an extracellular signaling molecule essential for neuronal lamination and synaptic plasticity; and <it>Gtl2/Meg3</it>, an imprinted maternally expressed non-translated RNA that serves as a host gene for C/D box snoRNAs and microRNAs. Chromatin immunoprecipitation assays documented <it>in vivo </it>MeCP2 binding to promoter regions of <it>Fxyd1, Reln</it>, and <it>Gtl2</it>.</p> <p>Conclusion</p> <p>Transcriptional profiling of cerebellum failed to detect significant global changes in <it>Mecp2</it>-mutant mice. Increased transcript levels of <it>Irak1, Fxyd1, Reln</it>, and <it>Gtl2 </it>may contribute to the neuronal dysfunction in MeCP2-deficient mice and individuals with Rett syndrome. Our data provide testable hypotheses for future studies of the regulatory or signaling pathways that these genes act on.</p

    Functional Implication of Dp71 in Osmoregulation and Vascular Permeability of the Retina

    Get PDF
    Functional alterations of Müller cells, the principal glia of the retina, are an early hallmark of most retina diseases and contribute to their further progression. The molecular mechanisms of these reactive Müller cell alterations, resulting in disturbed retinal homeostasis, remain largely unknown. Here we show that experimental detachment of mouse retina induces mislocation of the inwardly rectifying potassium channels (Kir4.1) and a downregulation of the water channel protein (AQP4) in Müller cells. These alterations are associated with a strong decrease of Dp71, a cytoskeleton protein responsible for the localization and the clustering of Kir4.1 and AQP4. Partial (in detached retinas) or total depletion of Dp71 in Müller cells (in Dp71-null mice) impairs the capability of volume regulation of Müller cells under osmotic stress. The abnormal swelling of Müller cells In Dp71-null mice involves the action of inflammatory mediators. Moreover, we investigated whether the alterations in Müller cells of Dp71-null mice may interfere with their regulatory effect on the blood-retina barrier. In the absence of Dp71, the retinal vascular permeability was increased as compared to the controls. Our results reveal that Dp71 is crucially implicated in the maintenance of potassium homeostasis, in transmembraneous water transport, and in the Müller cell-mediated regulation of retinal vascular permeability. Furthermore, our data provide novel insights into the mechanisms of retinal homeostasis provided by Müller cells under normal and pathological conditions
    corecore