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Dear Editor, 

I am pleased to send you the revised version of our paper submitted under the ref.PK12-106.  

Here are the detailed reply to the reviewers comments : 

Reviewer 1 : 

1. The oxidation of Bodipy (1) was checked again vs. ferrocene and confirms the value of table 1. Actually it 

is not surprising to have such a discrepancy for this compound, since Gaussian has trouble to deal 

properly with the geometry of the mesityl substituent in the calculations. The geometry optimization for 

BODIPY-mesityl gave a dissymmetrical structure with one styryl having a 15.8° angle with the BODIPY 

core and the other a 23.6° angle. This result was surprising and is probably not a good picture of the 

actual structure of the molecule. An alternate geometry where the mesityl groups were fixed at a 90◦ 

angle was also tested but both geometries gave poor results for the electronic properties as seen on the 

orbitals energy and vertical absorption obtained by TDDFT. This point has been discussed in a previous 

paper (Org. Biomol. Chem., 2010, 8, 4546–4553). 

2. Done in the revised form. 

3. Fig 3b was simplified highlighting only the LUMO and HOMO orbitals instead of the whole set. 

4. Unclear sentences have been corrected according to the reviewer’s remark. 

Reviewer 2 : 

1. Figure numbering was checked and corrected. 

2. ‘Microdisk’ was changed into ‘disk’ as suggested. 

3. The sentence was maintained since it concerns another kind of experiment (electrochemistry performed 

under fluorescence microscope) so the electrodes used are not exactly the same. 

Reviewer 3 : 

1. The electrode reactions have been added in the figure. 

2. If this remark concerns the first oxidation process, we perfectly agree, but DPV allows to better separate 

the two steps of what appears as a shoulder in CV. 

3. Even though these peaks are close to the limit of the potential window, it can be seen that the peak ratio 

between forward and backward signal is much less than one. This situation remains even if the potential 

is swept back a little bit earlier. 

4. This was changed in the table and in the text. 

5. Done in the revised form. 

6. Done in the revised form. 

7. Concentration of the supporting electrolyte was added. Potential values are not specified in the caption 

since the reference is only a pseudo-ref, so they may differ from those reported in table 2. Potentials are 

controlled by a thin layer CV recorded before spectroelectrochemical measurements. 

 

Best regards          

Dr F. Miomandre 

*Response to Reviewers



 

New boron dipyrromethene-ferrocene conjugate exhibiting electrochromic properties. Four redox 

states are available and investigated by spectroelectrochemistry. The fluorescence can be switched 

on by chemical or electrochemical oxidation. Fluorescence can be monitored reversibly under 

electrochemical control. 
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Abstract 

 

A new boron dipyrromethene-ferrocene (BODIPY-Fc) conjugate with pentafluorophenyl as 

the meso substituent and two Fc termini was synthesized and its spectroscopic and 

electrochemical features were analysed. An intramolecular charge transfer from the donor Fc 

to the acceptor BODIPY has been predicted by theory and confirmed experimentally, leading 

to efficient fluorescence quenching when the dyad is in the neutral state. Fluorescence can be 

triggered by oxidizing both ferrocenyl units either chemically or electrochemically. 

Eventually, a fully reversible fluorescence switch is evidenced by coupling TIRF microscopy 

with electrolysis in an electrochemical cell.  

 

 

 

1. Introduction 

 

The design of redox active fluorophores represents a very promising research field that has 

attracted much interest for a couple of years[1-6]. Practical applications in sensors of redox 

active compounds or in electrically driven light emitting devices can be envisaged. Among 

the various examples of such compounds described in the literature, ferrocene (Fc) derivatives 

constitute the most popular family of redox-active moieties associated to fluorophores due to 

their redox stability and versatility of chemical functionalization[7-9]. Besides, boron 

dipyrromethene (BODIPY) is also one of the most encountered organic fluorophores because 

of its very convenient spectroscopic properties, namely strong UV-visible absorption, quite 

narrow fluorescence bands and corresponding high fluorescence quantum yields (f > 

0.7)[10-13]. Nevertheless, only a few examples of BODIPY-ferrocene dyads have been 
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reported so far[14-17], despite their potentially interesting properties. Indeed, they are likely 

to display a low-lying intramolecular charge transfer (ICT) in the neutral form, as well as 

photoinduced electron transfer (PET) resulting in quenching of BODIPY-based fluorescence. 

These phenomena are likely to be cancelled upon changing the redox state of Fc, which has 

been demonstrated by chemical oxidation of other BODIPY-Fc conjugates [14, 15]. In this 

communication, a new BODIPY-Fc compound with enhanced charge transfer between a 

donor mesityl styryl branch and an acceptor pentafluorophenyl meso substituent was 

synthesised and its electrochemical and spectroscopic properties were analysed in comparison 

with a model compound having the ferrocenyl termini replaced by mesityl groups (see Chart 

1). Compared to previously published similar compounds, the difference arises from the meso 

substituent that is likely to enhance the attracting power of the BODIPY core in the final 

donor-acceptor-donor dyad. We will demonstrate that this compound represents an 

electrochemically controlled switch of fluorescence monitored by coupling TIRF microscopy 

and electrochemistry; this combination is known to be an efficient tool to highlight 

electrofluorochromism phenomena [18]. 

 

 

Chart 1 : The BODIPY-ferrocenyl (Fc) conjugate (2) and the reference compound BODIPY-

mesityl (1) 

 

2. Experimental section 
 

2.1 Materials and synthesis 
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All reagents were purchased from Sigma-Aldrich and used as received. CH2Cl2 and petroleum 

ether were purchased from SDS and used as received. Toluene was distilled under N2 prior to 

use from sodium/benzophenone. 

Column chromatography was carried out under positive pressure, using 40-63 m silica gel 

(SDS) and the indicated solvents. Solvent evaporation was conducted under reduced pressure 

at temperatures lower than 45°C. Further drying of the residue was accomplished under high 

vacuum. 

NMR spectra were recorded on a JEOL ECS 400 MHz spectrometer. FTIR analyses were 

carried out on a Nicolet Avatar 330 FTIR. Melting point was obtained without correction with 

a STUART SMP 10 apparatus. Liquid secondary ion high-resolution mass spectrometry data 

(HRMS) were obtained from the CRMPO mass spectrometry laboratory at the University of 

Rennes (France).  

The synthesis of BODIPY-mesityl (1) has already been published by our group[19]. 

BODIPY-Fc (2) was synthesized according to the following procedure. Piperidine (50 L) 

was added to a solution of 8-pentafluorophenyl 1,7-dimethyl-2,6-diethyl-4,4-difluoro-4-bora-

3a,4a-diaza-s-indacene (209 mg, 0.44 mmol) in toluene (30 mL), under an argon atmosphere, 

followed by ferrocenecarboxaldehyde (213 mg, 0.99 mmol) in toluene (10 mL). The resulting 

mixture was refluxed for 30 h. The solvent was removed under vacuum and the residue was 

purified by silica gel column chromatography, using CH2Cl2:petroleum ether 2:8 (v/v) as the 

eluent. The blue fraction was collected to afford a dark blue solid (199 mg, yield 52%). M.p. : 

160-165 °C. IR : 1606 (C=C), 1497 (C=N) cm
-1

. 
1
H NMR (CDCl3, 400 MHz)  1.18 (t, J = 7.6 

Hz, 6H), 1.53 (s, 6H), 2.60 (q, J = 7.4 Hz, 4H), 4.24 (s, 10H), 4.46 (s, 4H), 4.66 (s, 4H), 7.20 

(d, J = 16.6 Hz, 2H), 7.31 (d, J = 16.5 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz)  151.3, 137.8, 

135.9, 134.7, 117.3, 83.2, 70.7, 69.9, 68.2, 18.4, 14.3, 10.8.
 11

B NMR (CDCl3, 133 MHz)  

0.26 (t, J = 34.5 Hz, 1B). 
19

F NMR (CDCl3, 376 MHz)  159.9 (m, 2F), 151.2 (m, 1F), 138.7 

(m, 4F). HRMS (electrospray): calculated for C45H38N2F7B
56

Fe2 862.1709, found 862.1726.  

 

 

2.2 DFT calculations 

 

Quantum chemical calculations were performed with the Gaussian 03 (Rev C.02) 

software[20]. Geometry optimizations were done at the B3LYP/Lanl2dz level of theory 

without symmetry constraint. In order to confirm the optimized structure is a true minimum, 
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vibrational frequencies were calculated at the same level of theory when the geometry 

optimization was successful.  

 

 

2.3 Electrochemistry and spectroscopy 

 
Solvents (SDS, HPLC grade) and electrolyte salts (Fluka, puriss.) were used without further 

purification. Cyclic voltammetry was recorded in a three electrode cell with a potentiostat 

(CH Instruments 600) driven by a PC. Platinum or gold disks (1 mm diameter) were used as 

working electrodes, while a platinum wire and Ag
+ 

(10
-2

 M in acetonitrile)/Ag were used as 

counter and reference electrodes, respectively. All the investigated solutions were deaerated 

by argon bubbling for at least 5 min before performing electrochemical measurements. 

Electronic absorption spectra were recorded on a Cary 500 (Varian) spectrophotometer in 1 

cm quartz cuvettes. Fluorescence spectra were recorded on a Fluorolog3 (Horiba) 

spectrofluorimeter, in a quartz cell at the right angle beam geometry. The solutions had OD 

below 0.1 at the excitation wavelength. 

UV-vis spectroelectrochemistry at variable temperature was performed in an optically 

transparent thin layer electrochemical (OTTLE) cell[21] equipped with Pt minigrid working 

and auxiliary electrodes and a silver wire as a pseudoreference electrode. The BODIPY-Fc (1) 

solutions in dichloromethane freshly distilled from CaH2 contained pre-dried 3∙10
-1

 M 

Bu4NPF6 (Aldrich) as the supporting electrolyte. The electrode potential during electrolyses 

was controlled by a PA4 potentiostat (Laboratory Devices, Polná, Czech Republic). The UV-

Vis spectra were recorded on a SCINCO S-3100 photodiode array spectrophotometer. 

 

2.4 TIRF microscopy coupled to electrochemistry measurements 

 

The experimental setup used for these measurements has been described in more detail in a 

recent paper[18]. Briefly, it is based on the coupling of a three-electrode electrochemical cell 

with an epifluorescence microscope under excitation with either 515-nm laser pulses or white 

light and wavelength selection through filters. The working electrode is a very thin (ca. 25 

nm) Pt layer coated on a glass microscope slide (170 µm thin) on which the cell is stuck. 

Counter and pseudoreference electrodes are Pt and Ag wires, respectively. The setup allows 

simultaneous recording of the faradaic current and fluorescence intensity when applying a 

potential signal to the working electrode. The fluorescence intensity is recorded through a side 
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port of the microscope and collected by a single photon photomultiplier or dispatched on a 

grating spectrometer for recording emission spectra under electrochemical control. 

 

 
3. Results and Discussion 

 
3.1 Synthesis 

BODIPY-Fc (2) was synthesized according to the same procedure as reference BODIPY-

mesityl (1), viz. through a Knoevenagel-type condensation of ferrocenecarboxaldehyde with 

8-pentafluorophenyl-2,6-diethyl-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-

indacene in the presence of piperidine[19]. The -extended BODIPY-Fc product was obtained 

in 52% yield and characterized by multinuclear NMR, IR spectroscopy and mass 

spectrometry. 

 

3.2 Spectroscopy and electrochemistry 

Figure 1 displays the electronic absorption spectra of BODIPY-Fc (2) and the BODIPY-

mesityl (1) model compound as well as the luminescence spectrum of (1). The main 

absorption band of (1) in the visible region corresponding to the BODIPY chromophore is 

split into two bands in BODIPY-Fc (2); the additional absorption band in the red part of the 

visible spectrum (739 nm) can be ascribed to an ICT between the donor Fc and the acceptor 

BODIPY subunits, while the other one (590 nm) is mainly due to the BODIPY centred S0→S1 

transition, significantly blue shifted (53 nm) compared to (1). The bands in the UV region are 

ascribed to -* S0→S2 transitions located on the BODIPY backbone with additional 

contributions from -* (350 nm) and metal centred d-d transitions (430 nm) located on the 

Fc subunits in (2)[22]. 

BODIPY-mesityl (1) emits light at λmax = 688 nm having the characteristic features of 

BODIPY fluorescence (i.e., high quantum yield, small Stokes shift)[19], while BODIPY-Fc 

(2) does not exhibit any emission. This behaviour is ascribed to an efficient PET between 

ferrocene (acting as a donor) and the excited state of BODIPY (acting as an acceptor). 

Table 1 summarizes the spectroscopic features of both dyes. 

 

Table 1 : Spectroscopic data for compounds (1) and (2) in dichloromethane. 
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Compound λ abs

max 1 /nm 

 

λ abs

max 2 /nm λ abs

max 3 /nm 

 

λ em

max  /nm 

 

ε1 (x10
3
) 

M
−1

 cm
−1

 

BODIPY -

mesityl  (1) 

- 643 364 688 54 

BODIPY-Fc (2) 739 590 342 - 30 

 

Figure 2 displays the electrochemical behaviour of BODIPY-Fc (2) compared to the model 

BODIPY-mesityl (1). Three pairs of redox peaks can be identified in the cyclic 

voltammogram (CV) of (2) and unambiguously ascribed to monoelectronic reduction of 

BODIPY, poorly resolved bielectronic oxidation of Fc and monoelectronic oxidation of 

BODIPY going from the cathodic to the anodic electrode potentials. The anodic peak current 

ratios are in agreement with the respective number of exchanged electrons in each case. As 

can be seen in Table 2, the reduction of BODIPY is nearly unaffected by the presence of Fc 

moieties, because the added electron in both radical anions remains located on the BODIPY 

core (see the discussion on the LUMO below). As expected, the reduction potential is slightly 

less negative than reported for a similar compound lacking the pentafluorophenyl meso 

substituent[17]. Conversely, the oxidation of BODIPY occurs at a much more positive 

potential for (2) than for (1), due to the coulombic repulsion between the positive charge on 

the BODIPY core and those created when oxidizing Fc into ferrocenium (Fc
+
). It seems also 

that the chemical stability of the fully oxidized BODIPY-Fc
3+

 species is lower than the one of 

oxidized BODIPY in (1) as shown by the smaller ratio of the backward vs. forward currents in 

the CV (this is confirmed by the spectroelectrochemical data, see below). Interestingly, the 

anodic wave corresponding to Fc oxidation in (2) is split into two components, as further 

evidenced by the differential pulse voltammetry (DPV) curve in Figure 2c. This feature 

corresponds to a mixed valence state in singly oxidized (2) that makes the second oxidation 

occur at a higher potential; this is the signature of a significant electronic interaction between 

the two Fc moieties in (2). While the first oxidation occurs nearly at the potential of free 

ferrocene (see Table 2), the oxidation of the second Fc moiety is positively shifted by 80 mV 

(non-interacting redox centres normally display a difference of 35 mV between their redox 

potentials[23]). The redox potential values for the Fc termini are found very close to those 

published for the parent compounds without the pentafluorophenyl meso substituent[17]. 

 

Table 2: Redox formal potentials for compounds (1) and (2) measured vs. 

ferrocene/ferrocenium 
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Compound E
o
1 /V E

o
2/V E

o
3/V 

BODIPY-mesityl (1) −1.33 - 0.47 

BODIPY-Fc (2) −1.32 0.05 ; 0.13 0.75 

 

 

3.3 Molecular and orbital modelling 

The geometry of (2) was calculated using the DFT B3LYP optimization method (see Figure 

3A). The pentafluorophenyl meso substituent is found almost perpendicular to the BODIPY 

core due to the steric hindrance of the methyl side groups. The vinyl bridges are almost in the 

same plane as the BODIPY (dihedral angle : 13°) and the cyclopentadienyl groups (dihedral 

angle : 8°). These facts suggest that the conjugation between both ferrocenyl centres through 

the BODIPY core is facilitated by the geometry. Besides, both ‘cis’ and ‘trans’ configurations 

for the relative positions of the ferrocenyl groups are allowed, since the energy difference is 

small (0.08 eV). 

The orbital modelling of the ‘trans’ configuration of (2) is shown in Figure 3B. The LUMO is, 

as expected, mainly centred at the BODIPY core, although with a small contribution from the 

ferrocenyl termini. The conjugation is clearly predicted by the calculations when looking at 

the HOMO, since the electron density is spread over the whole molecule backbone and not 

confined only on the ferrocenyl moieties. Table 3 compares the energy levels obtained by the 

calculations with the ones derived from spectroscopic and electrochemical data. The 

calculated HOMO-LUMO gap for BODIPY-Fc (2) is close to that determined experimentally. 

However, it was difficult to find a satisfactory geometry for BODIPY (1) and its LUMO 

energy and thus HOMO-LUMO gap are therefore clearly overestimated. The dication of 

BODIPY-Fc (2) was also calculated. The single electrons are clearly distributed over both 

ferrocenyl units as expected from electrochemistry (see Fig. 3C). 

 

Table 3 : Calculated and experimentally deduced frontier orbital energies (eV). 

 
Compound 

DFT
i
 UV-Vis 

Spectroscopy
ii
 

Electrochemistry
iii

 

LUMO 

(1) 

−3.17 - −3.77 

HOMO −5.19 - −5.57 

HOMO-LUMO 

gap 

2.02 1.92 1.80 
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LUMO 

(2) 

−3.16 - −3.78 

HOMO −5.11 - −5.15 

HOMO-LUMO 

gap 

1.95 1.67 1.37 

i 
Level of theory: B3LYP / Lanl2dz 

ii
 Calculated using data from Table 1 and EHOMO-LUMO (eV) = 1240/max (nm) 

iii
 Calculated using data from Table 2 and E(Fc) = −5.1 eV [23] 

 

 

3.4 UV-Vis spectroelectrochemistry 

The spectroelectrochemical behavior of BODIPY-Fc (2) was investigated in an optically 

transparent thin layer cell allowing rapid exhaustive electrolysis and outstanding resolution of 

close lying redox steps (Fig. 4). First, when a negative potential (E
o

1) is applied to generate 

the anion radical of (2) (Fig. 4a), one can clearly observe a dramatic drop of the intensity 

associated with the ICT band in the red part of the spectrum. Several isosbestic points as well 

as full recovery upon reoxidation give evidence that the electrochemical reduction leads to a 

single stable species under the experimental conditions. When applying a positive potential 

(E
o

2) corresponding to the first oxidation (Fig. 4b), the ICT band intensity starts to fall down 

while a new band in the 600 nm range rises. There is also a small but significant band of the 

monocation rising at ca. 870 nm, which probably corresponds to the Fe(II)-Fe(III) 

intervalence electron transfer (IVCT), for it again disappears when the dication is formed. 

Sweeping the anodic potential to the second oxidation (E
o

3) makes the original ICT band 

totally vanish while a second new band just below 700 nm clearly appears. The latter has also 

a charge transfer character but now the BODIPY core acts as the donor and the ferrocenium 

moieties as the acceptors. This is confirmed by the disappearance of this band when the 

BODIPY is oxidized in its turn, but this final oxidation is not fully reversible, as expected 

from the CV (Fig. 2b). The results are consistent with those from similar compounds[16] but 

in the present case the signature of the three successive oxidized steps has been identified.  

The anodic spectroelectrochemistry of (2) in dichloromethane was repeated at 243 K. It 

resulted in a slightly different intensity pattern of the dication in the visible region and 

increased stability of the fully oxidized tricationic product. 

 

3.5 Electrochemical monitoring of the fluorescence 
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It has already been demonstrated that in this kind of dyad the fluorescence can be switched on 

upon ferrocene oxidation[16]. First we checked this possibility by chemical oxidation using 

FeCl3 as the oxidizing agent. Figure 5 shows the evolution of the emission spectra recorded in 

a cuvette upon successive additions of FeCl3 when exciting at 590 nm (at this wavelength the 

absorption does not change upon oxidation, see Fig.4). A new emission band starts to appear 

at 610 nm, in agreement with previously observed behaviour[15]. This fluorescence is 

associated with the absorption peak at 610 nm that rises in Fig.4d with a very small Stokes 

shift. To confirm this result, we tried to monitor the luminescence switch electrochemically 

instead of chemically. Having coupled TIRF microscopy with the electrochemical cell set-up, 

we were able to record the luminescence intensity modulation as a function of applied 

potential. Figure 6 shows that the luminescence of (2) can reversibly be switched between the 

emitting bielectronic oxidized state and the non-emitting neutral state. Increasing the positive 

potential limit makes the modulation faster and the amplitude greater. Note that the potentials 

are different from the ones determined by CV due to uncompensated ohmic drop in the 

TIRFM electrochemical setup (the working electrode area in the latter is larger). The two 

potential values applied at the end of the step correspond to oxidation of the Fc moieties while 

the BODIPY core remains neutral. It confirms that cancelling the donor character of the Fc 

moiety upon oxidation can actually restore the BODIPY fluorescence and that this process 

can be controlled reversibly. Finally the recording of emission spectra upon application of 

electrode potential shows an emerging band with a maximum near 610 nm that disappears 

when the potential is stepped back to 0V (Figure 7). This confirms that the electrogenerated 

emitting species is the same as in the chemical oxidation experiments. The reversibility 

proves that the luminescence does not come from residual BODIPY or BODIPY liberation 

upon oxidation of BODIPY-Fc (2). Thus it is demonstrated that (2) actually exhibits an 

electrofluorochromic behaviour between the neutral and bielectronic oxidized states. 

 

 

4. Conclusion 

A new dyad involving an organic fluorophore (BODIPY) connected to two redox-active 

moieties (ferrocenyl termini) has been synthesized and its electrochemical and spectroscopic 

features analysed with a support from theoretical modelling. In the dyad the two ferrocene 

units are conjugated with the BODIPY core, the fluorescence of which being totally quenched 

by a photoinduced electron transfer. It has been demonstrated that bielectronic oxidation of 

the termini to ferrocenium (either chemical or electrochemical) triggers the fluorescence of 
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the BODIPY chromophore at 610 nm. The process is fully reversible. Applications in the field 

of electrofluorochromic displays or highly sensitive sensors can be envisaged using this 

approach.  

 

 

Acknowledgments 

J.F. Audibert is warmly acknowledged for the TIRF microscopy measurements. 

 

References 

 
[1] A.C. Benniston, G. Copley, K.J. Elliott, R.W. Harrington, W. Clegg, Eur. J. Org.Chem., 

(2008) 2705. 

[2] R.A. Illos, E. Harlev, S. Bittner, Tet. Lett., 46 (2005) 8427. 

[3] H. Röhr, C. Trieflinger, K. Rurack, J. Daub, Chem. Eur. J., 12 (2006) 689. 

[4] X.W. Xiao, W. Xu, D.Q. Zhang, H. Xu, L. Liu, D.B. Zhu, New J. Chem., 29 (2005) 1291. 

[5] G.X. Zhang, D.Q. Zhang, X.F. Guo, D.B. Zhu, Org. Lett., 6 (2004) 1209. 

[6] C. Dumas-Verdes, F. Miomandre, E. Lepicier, O. Galangau, T.T. Vu, G. Clavier, R. 

Meallet-Renault, P. Audebert, Eur. J. Org. Chem., (2010) 2525. 

[7] R.L. Zhang, Z.L. Wang, Y.S. Wu, H.B. Fu, J.N. Yao, Org. Lett., 10 (2008) 3065. 

[8] A. Togni, T. Hayashi, Wiley-VCH, Weinheim, 1995. 

[9] M.J. Carney, J.S. Lesniak, M.D. Likar, J.R. Pladziewicz, J. Am. Chem. Soc., 106 (1984) 

2565. 

[10] A. Loudet, K. Burgess, Chem. Rev., 107 (2007) 4891. 

[11] R. Ziessel, G. Ulrich, A. Harriman, New J. Chem., 31 (2007) 496. 

[12] G. Ulrich, R. Ziessel, A. Harriman, Angew.Chem.Int.Ed., 47 (2008) 1184. 

[13] A.C. Benniston, G. Copley, Phys. Chem. Chem. Phys., 11 (2009) 4124. 

[14] T.K. Khan, R.R.S. Pissurlenkar, M.S. Shaikh, M. Ravikanth, J. Organomet. Chem., 697 

(2012) 65. 

[15] M.R. Rao, K.V.P. Kumar, M. Ravikanth, J. Organomet. Chem., 695 (2010) 863. 

[16] X.D. Yin, Y.J. Li, Y.L. Li, Y.L. Zhu, X.L. Tang, H.Y. Zheng, D.B. Zhu, Tetrahedron, 65 

(2009) 8373. 

[17] R. Ziessel, P. Retailleau, K.J. Elliott, A. Harriman, Chem.Eur. J., 15 (2009) 10369. 

[18] F. Miomandre, E. Lepicier, S. Munteanu, O. Galangau, J.F. Audibert, R. Meallet-Renault, 

P. Audebert, R.B. Pansu, ACS Appl. Mat. Int., 3 (2011) 690. 

[19] O. Galangau, C. Dumas-Verdes, R. Meallet-Renault, G. Clavier, Org. Biomol. Chem., 8 

(2010) 4546. 

[20] R.C. Gaussian 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. 

Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. 

Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, 

G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. 

Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. 

Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. 

J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. 

Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. 

Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. 

G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 

 

Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, 

M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. 

Pople, Gaussian, Inc., Wallingford CT, 2004. 

[21] F. Hartl, H. Luyten, H.A. Nieuwenhuis, G. Schoemaker, Appl. Spectroscopy, 48 (1994) 

1522. 

[22] U.M. Rabie, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 74 

(2009) 746. 

[23] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, in, 

Wiley, New York, 2001. 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

12 

 

Figure captions 

 

 

Figure 1 : Electronic absorption spectra of (1) (blue full line) and (2) (red full line) and 

emission spectrum of (1) (blue dashed line, excitation : 640 nm) in dichloromethane. 

 

Figure 2 : CV of A) BODIPY-mesityl (1) and B) BODIPY-Fc (2) 1 mM in dichloromethane 

(+ 0.1 M TBAPF6) on Pt (scan rate: 50 mV/s). Potentials are vs. Ag
+
/Ag reference. Peak 

under the cross is not due to the compound. 

C) : DPV of BODIPY-Fc (2) (pulse width : 50 ms ; pulse amplitude : 10 mV ; scan rate : 5 

mV/s) 

 

Figure 3 : A) Optimized geometries (left : ‘cis’ form ; right : ‘trans’ form) of BODIPY-Fc (2). 

B) Frontier molecular orbitals of (2). C) Spin density difference (spin() – spin()) for the 

dication of BODIPY-Fc (2) (blue lobes correspond to excess  spin density) 

 

Figure 4 : UV-vis spectroelectrochemistry of BODIPY-Fc (2) 10
-3 

M in dichloromethane (+ 

0.3M TBAPF6) at 283 K (OTTLE cell). A) One electron reduction into the radical anion ; B) 

One-electron oxidation into the corresponding cation; C): one-electron oxidation of the cation 

into the corresponding dication. D) Irreversible one-electron oxidation of BODIPY-Fc
2+

. 

 

Figure 5 : Emission spectral changes (exc = 590 nm) of BODIPY-Fc (2) 5.4 µM in 

dichloromethane upon addition of FeCl3. The FeCl3 concentration was varied from 0 to 70 

µM by 10 µM steps.  

 

Figure 6 : Simultaneous variations of fluorescence intensity (upper curve, left scale in a.u.) 

and current (lower curve, right scale in A) recorded under microscope upon potential steps 

between -0.4 V and resp. 1.2 V (a) or 0.9 V (b) for 30 s, for BODIPY-Fc (2) 1 mM in 

dichloromethane. Excitation: laser pulse (515 nm). 

 

Figure 7 : Emission spectroelectrochemistry of BODIPY-Fc (2): 0.2 mM in acetonitrile, 

recorded under fluorescence microscope, using TIRF illumination, at various electrolysis 

times (reversal time : 30s). Electrode potential : 1 V vs. Ag pseudoreference electrode. 

Excitation: white mercury lamp with FITC filter (460-500 nm). 

 

Figure SI1 : UV-vis spectroelectrochemistry of BODIPY-Fc (2) 10
-3 

M in dichloromethane 

dichloromethane (+ 0.3M TBAPF6) at 243 K (OTTLE cell). A) One-electron oxidation into 

the corresponding cation; B): one-electron oxidation of the cation into the corresponding 

dication. C) One-electron oxidation of the dication into the corresponding trication. 
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