2,594 research outputs found
Jamming in frictionless packings of spheres: determination of the critical volume fraction
The jamming transition in granular packings is characterized by a sudden change in the coordination number. In this work we investigate the evolution of coordination number as function of volume fraction for frictionless packings of spheres undergoing isotropic deformation. Using the results obtained from Discrete Element Method simulations, we confirm that the coordination number depends on volume fraction by a power law with exponent α≈0.5 above the critical volume fraction and up to rather high densities. We find that the system size and loading rate do not have an important effect on the evolution of the coordination number. Polydispersity of the packing seems to cause a shift in the critical volume fraction, i.e., more heterogeneous packings jam at higher volume fractions. Finally, we propose and evaluate alternative methods to determine the critical volume fraction based on the number of rattlers, the pressure and the ratio of kinetic and potential energies. The results are all consistent with the critical volume fractions obtained from the fits of the power law to the simulation data
Dune formation on the present Mars
We apply a model for sand dunes to calculate formation of dunes on Mars under
the present Martian atmospheric conditions. We find that different dune shapes
as those imaged by Mars Global Surveyor could have been formed by the action of
sand-moving winds occuring on today's Mars. Our calculations show, however,
that Martian dunes could be only formed due to the higher efficiency of Martian
winds in carrying grains into saltation. The model equations are solved to
study saltation transport under different atmospheric conditions valid for
Mars. We obtain an estimate for the wind speed and migration velocity of
barchan dunes at different places on Mars. From comparison with the shape of
bimodal sand dunes, we find an estimate for the timescale of the changes in
Martian wind regimes.Comment: 16 pages, 12 figure
Size distribution and structure of Barchan dune fields
Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009), we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction
Antimycobacterial and cytotoxicity activities of free and liposome-encapsulated 3-(4'-bromo[1,1'-biphenyl-4-yl)-3-(4-bromo-phenyl)-N,N-dimethyl-2-propen-1-amine
The antimycobacterial activity of 3-(4'-bromo[1,1'-biphenyl-4-yl)-3-(4-bromo-phenyl)-N,N-dimethyl-2-propen-1-amine (BBAP), free or incorporated in preformed liposomes, on extracellular M. tuberculosis H37Rv was 8 and 25 μM (MIC), respectively. Extracellular antimycobacterial activity was not significantly improved by entrapment of BBAP in liposomes, but there was a 6.1-fold reduction of BBAP cytotoxicity on J774 macrophages. Liposomal BBAP or its free form showed IC50 values of 165 and 27 μM, resulting in a selectivity index (SI=IC50/MIC) of 3.4 and 6.6, respectively. Free BBAP in concentrations from 10 to 80 μM were quite effective in eliminating intracellular M. tuberculosis while liposomal formulation was less effective at these concentrations.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Structural analysis, magnetic and transport properties of the (Ru1-xCox)Sr2GdCu2O8 system
The effects of Co substitution on structural and superconducting properties
of RuSr2GdCu2O8 compound have been studied. Rietveld refinements of the X-ray
diffraction patterns indicate that the cobalt ion progressively replaces
ruthenium sites. This replacement induces significant changes on the crystal
structure and on the magnetic and superconducting properties. The effects Co
substitution on the superconducting behaviour, and more particulary on the
changes induce by the hole doping mechanism, were investigated in
(Ru1-xCox)Sr2GdCu2O8 by a "bond valence sum" analysis with Co content from x=
0.0 to x = 0.2. The weak ferromagnetic transition at Tm= 138.2 K is shifted to
lower temperature, and suppressed at higher Co content. From the
crystallographic point of view the Ru-O(1)-Cu bond angle, associated to the
rotation of the RuO6 octahedra, around the c-axis remain essetially constant
when Ru is substituted by Co. Furthermore, increasing Co content has the effect
to increase the weak ferromagnetic moment, which may be interpreted as the main
responsible for breaking the delicate balance between magnetic and
superconducting ordering.Comment: 21 pages, 8 figure
A two-species continuum model for aeolian sand transport
Starting from the physics on the grain scale, we develop a simple continuum
description of aeolian sand transport. Beyond popular mean-field models, but
without sacrificing their computational efficiency, it accounts for both
dominant grain populations, hopping (or "saltating") and creeping (or
"reptating") grains. The predicted stationary sand transport rate is in
excellent agreement with wind tunnel experiments simulating wind conditions
ranging from the onset of saltation to storms. Our closed set of equations thus
provides an analytically tractable, numerically precise, and computationally
efficient starting point for applications addressing a wealth of phenomena from
dune formation to dust emission.Comment: 23 pages, 9 figure
Minimal size of a barchan dune
Barchans are dunes of high mobility which have a crescent shape and propagate
under conditions of unidirectional wind. However, sand dunes only appear above
a critical size, which scales with the saturation distance of the sand flux [P.
Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002);
B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B {\bf{28,}} 321 (2002);
G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E {\bf{64,}} 31305
(2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys.
Rev. Lett. {\bf{89,}} 264301 (2002) that this flux fetch distance is itself
constant. Indeed, this could not explain the proto size of barchan dunes, which
often occur in coastal areas of high litoral drift, and the scale of dunes on
Mars. In the present work, we show from three dimensional calculations of sand
transport that the size and the shape of the minimal barchan dune depend on the
wind friction speed and the sand flux on the area between dunes in a field. Our
results explain the common appearance of barchans a few tens of centimeter high
which are observed along coasts. Furthermore, we find that the rate at which
grains enter saltation on Mars is one order of magnitude higher than on Earth,
and is relevant to correctly obtain the minimal dune size on Mars.Comment: 11 pages, 10 figure
- …
