30 research outputs found

    Gapless Excitation above a Domain Wall Ground State in a Flat Band Hubbard Model

    Full text link
    We construct a set of exact ground states with a localized ferromagnetic domain wall and with an extended spiral structure in a deformed flat-band Hubbard model in arbitrary dimensions. We show the uniqueness of the ground state for the half-filled lowest band in a fixed magnetization subspace. The ground states with these structures are degenerate with all-spin-up or all-spin-down states under the open boundary condition. We represent a spin one-point function in terms of local electron number density, and find the domain wall structure in our model. We show the existence of gapless excitations above a domain wall ground state in dimensions higher than one. On the other hand, under the periodic boundary condition, the ground state is the all-spin-up or all-spin-down state. We show that the spin-wave excitation above the all-spin-up or -down state has an energy gap because of the anisotropy.Comment: 26 pages, 1 figure. Typos are fixe

    Genetic dissimilarity in varieties of Artemisia annua L. based on agronomic, physiological and phytochemical characters

    Get PDF
    O presente estudo objetivou estimar a variabilidade genética existente entre caracteres agronômicos, fisiológicos e fitoquímicos em variedades de A. annua. O delineamento experimental foi inteiramente casualizado e os tratamentos foram as variedades Artemis, 2/39x5x3M, e 2/39x1V de A. annua, submetidas a avaliações agronômicas, fisiológicas e fitoquímicas. Para a realização das estimativas de distância genética foram geradas matrizes de dissimilaridade utilizando a distância Euclidiana e os métodos de agrupamento de Tocher e UPGMA. Além disso, avaliou-se a importância relativa dos caracteres para divergência genética pelo método de Singh. As análises foram realizadas pelo software Genes e os dendrogramas obtidos pelo NTSYS. A presença de variabilidade genética dentro das variedades permitiu a identificação de acessos dissimilares e com média elevada para as características estudadas. O número de ramificações, concentração intracelular de CO2, e o rendimento de óleo essencial foram os caracteres que mais contribuíram para a dissimilaridade genética de A. annua. Os acessos B24, C5 e C32 foram os mais promissores dentro das variedades e devem ser conservados para futuras hibridações, sendo que as hibridações mais promissoras na obtenção de populações segregantes desejadas são B24 x C5, B24 x C32 e C5 x C321621356363COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESsem informaçãoThis study aimed to estimate the genetic variability among agronomic, physiological, and phytochemical characters in varieties of A. annua. The experimental design was completely randomized and the treatments were the varieties Artemis, 2/39x5x3M and 2/39x1V of A. annua, subject to agronomic, physiological and phytochemical evaluations. To estimate the genetic distances, dissimilarity matrices were generated using the Euclidean distance and the Tocher and UPGMA grouping methods. Moreover, we evaluated the relative importance of the characters for genetic divergence through the method of Singh. The analyses were performed in the Genes software and the dendrograms were obtained from the NTSYS program. The presence of genetic variability within the varieties allowed the identification of dissimilar accessions with high average for all traits. The number of branches, intracellular concentration of CO2 and oil yield were the traits that contributed most to the genetic dissimilarity of A. annua. The accessions B24, C5 and C32 were the most promising within the populations and must be conserved for future crossings, and the most promising crosses to obtain the desired segregant populations were B24 x C5, B24 x C32 and C5 x C3

    Ferromagnetic Domain Wall Ground States in One-Dimensional Deformed Flat-Band Hubbard Model

    Full text link
    We construct a set of exact ground states with a localized ferromagnetic domain wall and an extended spiral structure in a quasi-one-dimensional deformed flat-band Hubbard model. In the case of quarter filling, we show the uniqueness of the ground state with a fixed magnetization. The ground states with these structures are degenerate with the all-spin-up and all-spin-down states. This property of the degeneracy is the same as the domain wall solutions in the XXZ Heisenberg-Ising model. We derive a useful recursion relation for the normalization of the domain wall ground state. Using this recursion relation, we discuss the convergence of the ground state expectation values of arbitrary local operators in the infinite-volume limit. In the ground state of the infinite-volume system, the translational symmetry is spontaneously broken by this structure. We prove that the cluster property holds for the domain wall ground state and excited states. We also estimate bounds of the ground state expectation values of several observables, such as one- and two-point functions of spin and electron number density.Comment: 34 pages, 3 figures, to be published in J. Stat. Phy

    Quantum spin systems at positive temperature

    Full text link
    We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature β\beta and the magnitude of the quantum spins \CalS satisfy \beta\ll\sqrt\CalS. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with \CalS\gg1. The most notable examples are the quantum orbital-compass model on Z2\Z^2 and the quantum 120-degree model on Z3\Z^3 which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state.Comment: 47 pages, version to appear in CMP (style files included

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
    corecore