155 research outputs found

    Open complex dynamics in cell mechanobiology and the problem of cancer

    Get PDF

    Experimental investigation of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys by study of morphology of fracture

    Get PDF
    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and electronic microscope to improve methods of monitoring of damage accumulation during fatigue test and verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue (HCF) regime using the Luong method [1] by β€œin-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both HCF and gigacycle fatigue regimes. Fracture surface analysis for cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometerprofiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ~300 ?m has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics

    MODEL OF GEOMEDIA CONTAINING DEFECTS: COLLECTIVE EFFECTS OF DEFECTS EVOLUTION DURING FORMATION OF POTENTIAL EARTHQUAKE FOCI

    Get PDF
    This paper describes the statistical thermo-dynamical evolution of an ensemble of defects in the geomedium in the field of externally applied stresses. The authors introduce β€˜tensor structural’ variables associated with two specific types of defects, fractures and localized shear faults (Fig. 1). Based on the procedure for averaging of the structural variables by statistical ensembles of defects, a self-consistency equation is developed; it determines the dependence of the macroscopic tensor of defects-induced strain on values of external stresses, the original pattern and interaction of defects. In the dimensionless case, the equation contains only the parameter of structural scaling, i.e. the ratio of specific structural scales, including the size of defects and an average distance between the defects.The self-consistency equation yields three typical responds of the geomedium containing defects to the increasing external stress (Fig. 2). The responses are determined from values of the structural scaling parameter. The concept of non-equilibrium free energy for a medium containing defects, given similar to the Ginzburg-Landau decomposition, allowed to construct evolutionary equations for the introduced parameters of order (deformation due to defects, and the structural scaling parameter) and to explore their solutions (Fig. 3).It is shown that the first response corresponds to stable quasi-plastic deformation of the geomedium, which occurs in regularly located areas characterized by the absence of collective orientation effects. Reducing the structural scaling parameter leads to the second response characterized by the occurrence of an area of meta-stability in the behavior of the medium containing defects, when, at a certain critical stress, the orientation transition takes place in the ensemble of interacting defects, which is accompanied by an abrupt increase of deformation (Fig. 2). Under the given observation/averaging scale, this transition is manifested by localized cataclastic deformation (i.e. a set of weak earthquakes), which migrates in space at a velocity several orders of magnitude lower than the speed of sound, as a β€˜slow’ deformation wave (Fig. 3). Further reduction of the structural scaling parameter leads to degeneracy of the orientation meta-stability and formation of localized dissipative defect structures in the medium. Once the critical stress is reached, such structures develop in the blow-up regime, i.e. the mode of avalanche-unstable growth of defects in the localized area that is shrinking eventually. At the scale of observation, this process is manifested as brittle fracturing that causes formation of a deformation zone, which size is proportional to the scale of observation, and corresponds to occurrence of a strong earthquake.On the basis of the proposed model showing the behavior of the geomedium containing defects in the field of external stresses, it is possible to describe main ways of stress relaxation in the rock massives – brittle large-scale destruction and cataclastic deformation as consequences of the collective behavior of defects, which is determined by the structural scaling parameter.Results of this study may prove useful for estimation of critical stresses and assessment of the geomedium status in seismically active regions and be viewed as model representations of the physical hypothesis about the uniform nature of deveΒ­lopment of discontinuities/defects in a wide range of spatial scales

    Scaling Analysis of Defect Induced Structure of A6061 Alloy at Dynamic Strain Localization

    Get PDF
    Plastic strain localization and fracture of dynamically loaded metallic samples, occurred during plug formation, are investigated. These processes are closely related to the instability of plastic flow and can be attributed to structural-scaling transitions in mesodefect ensembles. The multiscale nature of defect structure allows us to use the fractal concept for quantitative analysis of both the fracture surface and the inner structure of a deformed material. The scaling properties of fracture surfaces are established in terms of the roughness index (Hurst exponent) as the characteristics of strain localization and fracture

    Absence of Normalizable Time-periodic Solutions for The Dirac Equation in Kerr-Newman-dS Black Hole Background

    Full text link
    We consider the Dirac equation on the background of a Kerr-Newman-de Sitter black hole. By performing variable separation, we show that there exists no time-periodic and normalizable solution of the Dirac equation. This conclusion holds true even in the extremal case. With respect to previously considered cases, the novelty is represented by the presence, together with a black hole event horizon, of a cosmological (non degenerate) event horizon, which is at the root of the possibility to draw a conclusion on the aforementioned topic in a straightforward way even in the extremal case.Comment: 12 pages. AMS styl

    ΠœΠžΠ”Π•Π›Π¬ Π“Π•ΠžΠ‘Π Π•Π”Π« Π‘ Π”Π•Π€Π•ΠšΠ’ΠΠœΠ˜: ΠšΠžΠ›Π›Π•ΠšΠ’Π˜Π’ΠΠ«Π• Π­Π€Π€Π•ΠšΠ’Π« Π ΠΠ—Π’Π˜Π’Π˜Π― ΠΠ•Π‘ΠŸΠ›ΠžΠ¨ΠΠžΠ‘Π’Π•Π™ ПРИ Π€ΠžΠ ΠœΠ˜Π ΠžΠ’ΠΠΠ˜Π˜ ΠŸΠžΠ’Π•ΠΠ¦Π˜ΠΠ›Π¬ΠΠ«Π₯ ΠžΠ§ΠΠ“ΠžΠ’ Π—Π•ΠœΠ›Π•Π’Π Π―Π‘Π•ΠΠ˜Π™

    Get PDF
    This paper describes the statistical thermo-dynamical evolution of an ensemble of defects in the geomedium in the field of externally applied stresses. The authors introduce β€˜tensor structural’ variables associated with two specific types of defects, fractures and localized shear faults (Fig. 1). Based on the procedure for averaging of the structural variables by statistical ensembles of defects, a self-consistency equation is developed; it determines the dependence of the macroscopic tensor of defects-induced strain on values of external stresses, the original pattern and interaction of defects. In the dimensionless case, the equation contains only the parameter of structural scaling, i.e. the ratio of specific structural scales, including the size of defects and an average distance between the defects.The self-consistency equation yields three typical responds of the geomedium containing defects to the increasing external stress (Fig. 2). The responses are determined from values of the structural scaling parameter. The concept of non-equilibrium free energy for a medium containing defects, given similar to the Ginzburg-Landau decomposition, allowed to construct evolutionary equations for the introduced parameters of order (deformation due to defects, and the structural scaling parameter) and to explore their solutions (Fig. 3).It is shown that the first response corresponds to stable quasi-plastic deformation of the geomedium, which occurs in regularly located areas characterized by the absence of collective orientation effects. Reducing the structural scaling parameter leads to the second response characterized by the occurrence of an area of meta-stability in the behavior of the medium containing defects, when, at a certain critical stress, the orientation transition takes place in the ensemble of interacting defects, which is accompanied by an abrupt increase of deformation (Fig. 2). Under the given observation/averaging scale, this transition is manifested by localized cataclastic deformation (i.e. a set of weak earthquakes), which migrates in space at a velocity several orders of magnitude lower than the speed of sound, as a β€˜slow’ deformation wave (Fig. 3). Further reduction of the structural scaling parameter leads to degeneracy of the orientation meta-stability and formation of localized dissipative defect structures in the medium. Once the critical stress is reached, such structures develop in the blow-up regime, i.e. the mode of avalanche-unstable growth of defects in the localized area that is shrinking eventually. At the scale of observation, this process is manifested as brittle fracturing that causes formation of a deformation zone, which size is proportional to the scale of observation, and corresponds to occurrence of a strong earthquake.On the basis of the proposed model showing the behavior of the geomedium containing defects in the field of external stresses, it is possible to describe main ways of stress relaxation in the rock massives – brittle large-scale destruction and cataclastic deformation as consequences of the collective behavior of defects, which is determined by the structural scaling parameter.Results of this study may prove useful for estimation of critical stresses and assessment of the geomedium status in seismically active regions and be viewed as model representations of the physical hypothesis about the uniform nature of deveΒ­lopment of discontinuities/defects in a wide range of spatial scales.Β Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ описана статистико-тСрмодинамичСская ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡ ансамбля Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² гСосрСдС Π² ΠΏΠΎΠ»Π΅ внСшнСго ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ напряТСния. Авторами вводятся Ρ‚Π΅Π½Π·ΠΎΡ€Π½Ρ‹Π΅Β  структурныС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅, ассоциированныС с двумя Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ Ρ‚ΠΈΠΏΠ°ΠΌΠΈ Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ²: Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½Π°ΠΌΠΈ ΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ сдвигами (рис. 1). ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° осрСднСния структурных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎ статистичСскому ансамблю Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ самосогласования, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰Π΅Π΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ макроскопичСского Ρ‚Π΅Π½Π·ΠΎΡ€Π° Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ, ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π²Π½Π΅ΡˆΠ½ΠΈΡ… напряТСний, исходной структуры ΠΈ взаимодСйствия Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π² Π±Π΅Π·Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΌ случаС содСрТит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ – ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ структурного скСйлинга. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ структурного скСйлинга опрСдСляСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… структурных ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΎΠ²: Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΈ срСдним расстояниСм ΠΌΠ΅ΠΆΠ΄Ρƒ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ уравнСния самосогласования ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ Ρ‚Ρ€ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ гСосрСды с Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ Π½Π° рост внСшнСго напряТСния (рис. 2), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° структурного скСйлинга. Π€ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠ° нСравновСсной свободной энСргии для срСды с Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ Π² Ρ„ΠΎΡ€ΠΌΠ΅, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠΉ Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡŽ Π“ΠΈΠ½Π·Π±ΡƒΡ€Π³Π°-Π›Π°Π½Π΄Π°Ρƒ, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ уравнСния для Π²Π²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² порядка (Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, обусловлСнной Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ, ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° структурного скСйлинга) ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… собствСнныС  Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ (рис. 3).Показано, Ρ‡Ρ‚ΠΎ пСрвая рСакция соотвСтствуСт устойчивому квазипластичСскому Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ срСды, Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ Π² рСгулярно располоТСнных пространствСнных областях, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ отсутствиСм ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… эффСктов. УмСньшСниС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° структурного скСйлинга ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ, которая характСризуСтся появлСниСм области ΠΌΠ΅Ρ‚Π°ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π² ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ срСды с Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΏΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ критичСском напряТСнии происходит ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π² ансамблС Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ², ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‰ΠΈΠΉΡΡ Ρ€Π΅Π·ΠΊΠΈΠΌ скачком Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ (рис. 2). ΠŸΡ€ΠΈ этом Π½Π° ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅ наблюдСния (осрСднСния) этот ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ проявляСтся Π² Π²ΠΈΠ΄Π΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ катакластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ (мноТСства слабых зСмлСтрясСний), ΠΌΠΈΠ³Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΏΠΎ пространству со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, Π½Π° порядки мСньшСй скорости Π·Π²ΡƒΠΊΠ° – Β«ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΉΒ» Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ (рис. 3). Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° структурного скСйлинга ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚Π°ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π² срСдС Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… диссипативных Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹Ρ… структур, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈ достиТСнии критичСского напряТСния Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ с обострСниСм – Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π»Π°Π²ΠΈΠ½Π½ΠΎ-нСустойчивого роста Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ пространствСнной области, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰Π΅ΠΉΡΡ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. На ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅ наблюдСния этот процСсс проявляСтся Π² Π²ΠΈΠ΄Π΅ Ρ…Ρ€ΡƒΠΏΠΊΠΎΠ³ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ с Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π·ΠΎΠ½Ρ‹ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ, соизмСримой с самим ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΎΠΌ наблюдСния, ΠΈ соотвСтствуСт появлСнию сильного зСмлСтрясСния.Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, построСнная модСль повСдСния гСосрСды с Π΄Π΅Ρ„Π΅ΠΊΡ‚Π°ΠΌΠΈ Π² ΠΏΠΎΠ»Π΅ Π²Π½Π΅ΡˆΠ½ΠΈΡ… напряТСний позволяСт ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ основныС способы рСлаксации напряТСний массивами Π³ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠ΄: Ρ…Ρ€ΡƒΠΏΠΊΠΎΠ΅ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΌΠ°ΡΡˆΡ‚Π°Π±Π½ΠΎΠ΅ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΈ катакластичСскоС Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ слСдствиями ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ повСдСния Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ², опрСдСляСмого Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° структурного скСйлинга.ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ для ΠΎΡ†Π΅Π½ΠΊΠΈ критичСских напряТСний ΠΈ состояний гСосрСды Π² сСйсмоактивных Ρ€Π°ΠΉΠΎΠ½Π°Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Π΅ прСдставлСния физичСской Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ ΠΎ СдинствС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ развития Π½Π΅ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ (Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ²) Π½Π° ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ спСктрС пространствСнных ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΎΠ²
    • …
    corecore