346 research outputs found

    SU(2) nonstandard bases: the case of mutually unbiased bases

    Get PDF
    This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU(2) corresponding to an irreducible representation of SU(2). The representation theory of SU(2) is reconsidered via the use of two truncated deformed oscillators. This leads to replace the familiar scheme {j^2, j_z} by a scheme {j^2, v(ra)}, where the two-parameter operator v(ra) is defined in the enveloping algebra of the Lie algebra su(2). The eigenvectors of the commuting set of operators {j^2, v(ra)} are adapted to a tower of chains SO(3) > C(2j+1), 2j integer, where C(2j+1) is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices.Comment: 33 pages; version2: rescaling of generalized Hadamard matrices, acknowledgment and references added, misprints corrected; version 3: published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA/ (22 pages

    Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities

    Full text link
    We examine in detail the relative equilibria in the four-vortex problem where two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and \Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is that for m > 0, the convex configurations all contain a line of symmetry, forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case exists only when m is positive. In fact, there exist asymmetric convex configurations when m < 0. In contrast to the Newtonian four-body problem with two equal pairs of masses, where the symmetry of all convex central configurations is unproven, the equations in the vortex case are easier to handle, allowing for a complete classification of all solutions. Precise counts on the number and type of solutions (equivalence classes) for different values of m, as well as a description of some of the bifurcations that occur, are provided. Our techniques involve a combination of analysis and modern and computational algebraic geometry

    Projective dynamics and classical gravitation

    Full text link
    Given a real vector space V of finite dimension, together with a particular homogeneous field of bivectors that we call a "field of projective forces", we define a law of dynamics such that the position of the particle is a "ray" i.e. a half-line drawn from the origin of V. The impulsion is a bivector whose support is a 2-plane containing the ray. Throwing the particle with a given initial impulsion defines a projective trajectory. It is a curve in the space of rays S(V), together with an impulsion attached to each ray. In the simplest example where the force is identically zero, the curve is a straight line and the impulsion a constant bivector. A striking feature of projective dynamics appears: the trajectories are not parameterized. Among the projective force fields corresponding to a central force, the one defining the Kepler problem is simpler than those corresponding to other homogeneities. Here the thrown ray describes a quadratic cone whose section by a hyperplane corresponds to a Keplerian conic. An original point of view on the hidden symmetries of the Kepler problem emerges, and clarifies some remarks due to Halphen and Appell. We also get the unexpected conclusion that there exists a notion of divergence-free field of projective forces if and only if dim V=4. No metric is involved in the axioms of projective dynamics.Comment: 20 pages, 4 figure

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n1(p)W_{2n-1}(p) of cardinality σ(p2n1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

    Full text link
    We introduce a one-parameter generalized oscillator algebra A(k) (that covers the case of the harmonic oscillator algebra) and discuss its finite- and infinite-dimensional representations according to the sign of the parameter k. We define an (Hamiltonian) operator associated with A(k) and examine the degeneracies of its spectrum. For the finite (when k < 0) and the infinite (when k > 0 or = 0) representations of A(k), we construct the associated phase operators and build temporally stable phase states as eigenstates of the phase operators. To overcome the difficulties related to the phase operator in the infinite-dimensional case and to avoid the degeneracy problem for the finite-dimensional case, we introduce a truncation procedure which generalizes the one used by Pegg and Barnett for the harmonic oscillator. This yields a truncated generalized oscillator algebra A(k,s), where s denotes the truncation order. We construct two types of temporally stable states for A(k,s) (as eigenstates of a phase operator and as eigenstates of a polynomial in the generators of A(k,s)). Two applications are considered in this article. The first concerns physical realizations of A(k) and A(k,s) in the context of one-dimensional quantum systems with finite (Morse system) or infinite (Poeschl-Teller system) discrete spectra. The second deals with mutually unbiased bases used in quantum information.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretical as a pape

    Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics

    Full text link
    Symmetric informationally complete positive operator valued measures (SIC-POVMs) are studied within the framework of the probability representation of quantum mechanics. A SIC-POVM is shown to be a special case of the probability representation. The problem of SIC-POVM existence is formulated in terms of symbols of operators associated with a star-product quantization scheme. We show that SIC-POVMs (if they do exist) must obey general rules of the star product, and, starting from this fact, we derive new relations on SIC-projectors. The case of qubits is considered in detail, in particular, the relation between the SIC probability representation and other probability representations is established, the connection with mutually unbiased bases is discussed, and comments to the Lie algebraic structure of SIC-POVMs are presented.Comment: 22 pages, 1 figure, LaTeX, partially presented at the Workshop "Nonlinearity and Coherence in Classical and Quantum Systems" held at the University "Federico II" in Naples, Italy on December 4, 2009 in honor of Prof. Margarita A. Man'ko in connection with her 70th birthday, minor misprints are corrected in the second versio

    Unitary and Non-Unitary Matrices as a Source of Different Bases of Operators Acting on Hilbert Spaces

    Full text link
    Columns of d^2 x N matrices are shown to create different sets of N operators acting on dd-dimensional Hilbert space. This construction corresponds to a formalism of the star-product of operator symbols. The known bases are shown to be partial cases of generic formulas derived by using d^2 x N matrices as a source for constructing arbitrary bases. The known examples of the SIC-POVM, MUBs, and the phase-space description of qubit states are considered from the viewpoint of the developed unified approach. Star-product schemes are classified with respect to associated d^2 x N matrices. In particular, unitary matrices correspond to self-dual schemes. Such self-dual star-product schemes are shown to be determined by dequantizers which do not form POVM.Comment: 12 pages, 1 figure, 1 table, to appear in Journal of Russian Laser Researc
    corecore