9 research outputs found

    Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway

    Get PDF
    Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway

    Integrated Regulation of Hepatic Lipid and Glucose Metabolism by Adipose Triacylglycerol Lipase and FoxO Proteins

    Get PDF
    Metabolism is a highly integrated process that is coordinately regulated between tissues and within individual cells. FoxO proteins are major targets of insulin action and contribute to the regulation of gluconeogenesis, glycolysis, and lipogenesis in the liver. However, the mechanisms by which FoxO proteins exert these diverse effects in an integrated fashion remain poorly understood. We report that FoxO proteins also exert important effects on intrahepatic lipolysis and fatty acid oxidation via the regulation of adipose triacylglycerol lipase (ATGL), which mediates the first step in lipolysis, and its inhibitor, the G0/S1 switch 2 gene (G0S2). We also find that ATGL-dependent lipolysis plays a critical role in mediating diverse effects of FoxO proteins in the liver, including effects on gluconeogenic, glycolytic, and lipogenic gene expression and metabolism. These results indicate that intrahepatic lipolysis plays a critical role in mediating and integrating the regulation of glucose and lipid metabolism downstream of FoxO proteins

    Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway

    Get PDF
    Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.</p

    Dual regulation of TxNIP by ChREBP and FoxO1 in liver

    No full text
    International audienceTxNIP (Thioredoxin-interacting protein) is considered as a potential drug target for type 2 diabetes. Although TxNIP expression is correlated with hyperglycemia and glucotoxicity in pancreatic β cells, its regulation in liver cells has been less investigated. In the current study, we aim at providing a better understanding of Txnip regulation in hepatocytes in response to physiological stimuli and in the context of hyperglycemia in db/db mice. We focused on regulatory pathways governed by ChREBP (Carbohydrate Responsive Element Binding Protein) and FoxO1 (Forkhead box protein O1), transcription factors that play central roles in mediating the effects of glucose and fasting on gene expression, respectively. Studies using genetically modified mice reveal that hepatic TxNIP is up-regulated by both ChREBP and FoxO1 in liver cells and that its expression strongly correlates with fasting, suggesting a major role for this protein in the physiological adaptation to nutrient restriction

    Lactobacillus acidophilus Mitigates Osteoarthritis-Associated Pain, Cartilage Disintegration and Gut Microbiota Dysbiosis in an Experimental Murine OA Model

    No full text
    To test probiotic therapy for osteoarthritis (OA), we administered Lactobacillus acidophilus (LA) by oral gavage (2&times;/week) after induction of OA by partial medial meniscectomy (PMM). Pain was assessed by von Frey filament and hot plate testing. Joint pathology and pain markers were comprehensively analyzed in knee joints, spinal cords, dorsal root ganglia and distal colon by Safranin O/fast green staining, immunofluorescence microscopy and RT-qPCR. LA acutely reduced inflammatory knee joint pain and prevented further OA progression. The therapeutic efficacy of LA was supported by a significant reduction of cartilage-degrading enzymes, pain markers and inflammatory factors in the tissues we examined. This finding suggests a likely clinical effect of LA on OA. The effect of LA treatment on the fecal microbiome was assessed by 16S rRNA gene amplicon sequencing analysis. LA significantly altered the fecal microbiota compared to vehicle-treated mice (PERMANOVA p &lt; 0.009). Our pre-clinical OA animal model revealed significant OA disease modifying effects of LA as reflected by rapid joint pain reduction, cartilage protection, and reversal of dysbiosis. Our findings suggest that LA treatment has beneficial systemic effects that can potentially be developed as a safe OA disease-modifying drug (OADMD)

    The Foxo1-Inducible Transcriptional Repressor Zfp125 Causes Hepatic Steatosis and Hypercholesterolemia

    No full text
    Liver-specific disruption of the type 2 deiodinase gene (Alb-D2KO) results in resistance to both diet-induced obesity and liver steatosis in mice. Here, we report that this is explained by an similar to 60% reduction in liver zinc-finger protein-125 (Zfp125) expression. Zfp125 is a Foxo1-inducible transcriptional repressor that causes lipid accumulation in the AML12 mouse hepatic cell line and liver steatosis in mice by reducing liver secretion of triglycerides and hepatocyte efflux of cholesterol. Zfp125 acts by repressing 18 genes involved in lipoprotein structure, lipid binding, and transport. The ApoE promoter contains a functional Zfp125-binding element that is also present in 17 other lipid-related genes repressed by Zfp125. While liver-specific knockdown of Zfp125 causes an "Alb-D2KO-like'' metabolic phenotype, liver-specific normalization of Zfp125 expression in Alb-D2KO mice rescues the phenotype, restoring normal susceptibility to diet-induced obesity, liver steatosis, and hypercholesterolemia.NIDDKEUHungarian Brain Research ProgramFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Coordenadoria de Apoio a Pesquisa (CAPES), BrazilRush Univ, Med Ctr, Div Endocrinol & Metab, Chicago, IL 60612 USAUniv Fed Sao Paulo, Program Translat Med, Sao Paulo, BrazilUniv Illinois, Coll Med, Dept Med, Sect Endocrinol Diabet & Metab, Chicago, IL USARush Univ, Div Digest Dis & Nutr, Med Ctr, Chicago, IL 60612 USAHarvard Med Sch, Joslin Diabet Ctr, Boston, MA USAUniv Prebiteriana Mackenzie, Ctr Biol Sci & Hlth, Dev Disorders Program, Sao Paulo, BrazilHungarian Acad Sci, Inst Expt Med, Dept Endocrine Neurobiol, Budapest, HungaryUniv Fed Sao Paulo, Program Translat Med, Sao Paulo, BrazilNIDDK: DK65055, R01DK106193, P30DK036836EU: 666869Hungarian Brain Research Program: KTIA_13_NAP_A_I/4FAPESP: 2011/21847-6Web of Scienc

    Coupling between Nutrient Availability and Thyroid Hormone Activation

    No full text
    The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway
    corecore