5,326 research outputs found

    Actual and potential distribution of an invasive canola pest, Meligethes viridescens (Coleoptera: Nitidulidae), in Canada

    Get PDF
    Meligethes viridescens (Fabricius), bronzed or rape blossom beetle, is a widespread and common pest of oilseed rape [Brassica napus L. and Brassica rapa L. (Brassicaceae)] in the western Palaearctic subregion. The establishment of M. viridescens in eastern North America has raised concern that its presence is a potential risk to the Canadian canola industry, especially to the prairie ecozone of western Canada where up to 4 million ha of summer canola (B. napus and B. rapa) are grown annually. Study of museum specimens indicated that M. viridescens was first recorded in Nova Scotia in 1947. Field surveys indicated that, as of 2001, M. viridescens was established as far west as Saint-Hyacinthe, Quebec. A CLIMEXTM model for M. viridescens in Europe was developed and validated with actual distribution records. In Canada the model predicted that once introduced, M. viridescens would readily survive in the canola-growing areas. The actual distribution of M. viridescens in eastern Canada matched the predicted distribution well. The westward dispersal to and establishment of M. viridescens in canola-growing areas of Ontario and western Canada, particularly southern Manitoba, appear to be inevitable. Establishment in these areas presents the risk of substantial production losses to canola producer

    First experimental evidence of one-dimensional plasma modes in superconducting thin wires

    Full text link
    We have studied niobium superconducting thin wires deposited onto a SrTiO3_{3} substrate. By measuring the reflection coefficient of the wires, resonances are observed in the superconducting state in the 130 MHz to 4 GHz range. They are interpreted as standing wave resonances of one-dimensional plasma modes propagating along the superconducting wire. The experimental dispersion law, ω\omega versus qq, presents a linear dependence over the entire wave vector range. The modes are softened as the temperature increases close the superconducting transition temperature. Very good agreement are observed between our data and the dispersion relation predicted by Kulik and Mooij and Sch\"on.Comment: Submitted to Physical review Letter

    Uniform in bandwidth exact rates for a class of kernel estimators

    Full text link
    Given an i.i.d sample (Yi,Zi)(Y_i,Z_i), taking values in \RRR^{d'}\times \RRR^d, we consider a collection Nadarya-Watson kernel estimators of the conditional expectations \EEE(+d_g(z)\mid Z=z), where zz belongs to a compact set H\subset \RRR^d, gg a Borel function on \RRR^{d'} and cg(),dg()c_g(\cdot),d_g(\cdot) are continuous functions on \RRR^d. Given two bandwidth sequences h_n<\wth_n fulfilling mild conditions, we obtain an exact and explicit almost sure limit bounds for the deviations of these estimators around their expectations, uniformly in g\in\GG,\;z\in H and h_n\le h\le \wth_n under mild conditions on the density fZf_Z, the class \GG, the kernel KK and the functions cg(),dg()c_g(\cdot),d_g(\cdot). We apply this result to prove that smoothed empirical likelihood can be used to build confidence intervals for conditional probabilities \PPP(Y\in C\mid Z=z), that hold uniformly in z\in H,\; C\in \CC,\; h\in [h_n,\wth_n]. Here \CC is a Vapnik-Chervonenkis class of sets.Comment: Published in the Annals of the Institute of Statistical Mathematics Volume 63, p. 1077-1102 (2011

    Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep

    Get PDF
    Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ34S and δ18O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite-mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, the mixing of those fluids with sulfate-containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute to the precipitation of barite at marine brine seeps such as the one studied here

    Itinerancy and Hidden Order in URu2Si2URu_2Si_2

    Full text link
    We argue that key characteristics of the enigmatic transition at T0=17.5KT_0= 17.5K in URu2Si2URu_2Si_2 indicate that the hidden order is a density wave formed within a band of composite quasiparticles, whose detailed structure is determined by local physics. We expand on our proposal (with J.A. Mydosh) of the hidden order as incommnesurate orbital antiferromagnetism and present experimental predictions to test our ideas. We then turn towards a microscopic description of orbital antiferromagnetism, exploring possible particle-hole pairings within the context of a simple one-band model. We end with a discussion of recent high-field and thermal transport experiment, and discuss their implications for the nature of the hidden order.Comment: 18 pages, 7 figures. v2 contains added referenc

    Resonant X-Ray Scattering from URu_{2}Si_{2}

    Full text link
    Based on a localized crystal electric field model for the U^{4+} in the (5f)^2-configuration, we analyze the resonant x-ray scattering spectra around U M_{IV} and M_{V} edges in URu_{2}Si_{2}, taking full Coulomb and spin-orbit interactions into account. We consider two level schemes, a singlet model of Santini and Amoretti and a doublet model of Ohkawa and Shimizu, and assume the antiferroquadrupolar order and the antiferromagnetic order as candidates for the ambient pressure phase and the high pressure phase. It is found that the spectral shapes as a function of photon energy are independent of the assumed level scheme, but are quite different between the antiferroquadrupole and antiferromagnetic phases, This may be useful to determine the character of the ordered phase.Comment: 8 pages, 5 figures, submitted to JPS

    Fluctuation Conductivity in Insulator-Superconductor Transitions with Dissipation

    Full text link
    We analyze here the fluctuation conductivity in the vicinity of the critical point in a 2D Josephson junction array shunted by an Ohmic resistor.We find that at the Gaussian level, the conductivity acquires a logarithmic dependence on T/(TTc)T/(T-T_c) when the dissipation is sufficiently small. In the renormalized classical regime, this logarithmic dependence gives rise to a leveling-off of the resistivity at low to intermediate temperatures when fluctuations are included. We show, however, that this trend does not persist to T=0 at which point the resistivity vanishes. The possible relationship of the leveling of the resistivity to the low temperature transport in granlar superconductors is discussed.Comment: 4 page

    Transients Among Binaries with Evolved Low-Mass Companions

    Get PDF
    We show that stable disk accretion should be very rare among low-mass X-ray binaries and cataclysmic variables whose evolution is driven by the nuclear expansion of the secondary star on the first giant branch. Stable accretion is confined to neutron-star systems where the secondary is still relatively massive, and some supersoft white dwarf accretors. All other systems, including all black-hole systems, appear as soft X-ray transients or dwarf novae. All long-period neutron-star systems become transient well before most of the envelope mass is transferred, and remain transient until envelope exhaustion. This complicates attempts to compare the numbers of millisecond pulsars in the Galactic disk with their LMXB progenitors, and also means that the pulsar spin rates are fixed in systems which are transient rather than steady, contrary to common assumption. The long-period persistent sources Sco X-2, LMC X-2, Cyg X-2 and V395 Car must have minimum companion masses > 0.75 Msun if they contain neutron stars, and still larger masses if they contain black holes. The companion in the neutron-star transient GRO J1744-2844 must have a mass <0.87 Msun. The existence of any steady sources at all at long periods supports the ideas that (a) the accretion disks in many, if not all, LMXBs are strongly irradiated by the central source, and (b) mass transfer is thermally unstable in long-period supersoft X-ray sources.Comment: 10 pages, Latex, 1 ps figure, Ap.J., accepted Feb. 15, 199

    The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations

    Get PDF
    We have developed a model of the high-energy accretion region for magnetic cataclysmic variables and applied it to {\it Extreme Ultraviolet Explorer} observations of 10 AM Herculis type systems. The major features of the EUV light curves are well described by the model. The light curves exhibit a large variety of features such as eclipses of the accretion region by the secondary star and the accretion stream, and dips caused by material very close to the accretion region. While all the observed features of the light curves are highly dependent on viewing geometry, none of the light curves are consistent with a flat, circular accretion spot whose lightcurve would vary solely from projection effects. The accretion region immediately above the WD surface is a source of EUV radiation caused by either a vertical extent to the accretion spot, or Compton scattering off electrons in the accretion column, or, very likely, both. Our model yields spot sizes averaging 0.06 RWD_{WD}, or f1×103f \sim 1 \times 10^{-3} the WD surface area, and average spot heights of 0.023 RWD_{WD}. Spectra extracted during broad dip phases are softer than spectra during the out-of-dip phases. This spectral ratio measurement leads to the conclusion that Compton scattering, some absorption by a warm absorber, geometric effects, an asymmetric temperature structure in the accretion region and an asymmetric density structure of the accretion columnare all important components needed to fully explain the data. Spectra extracted at phases where the accretion spot is hidden behind the limb of the WD, but with the accretion column immediately above the spot still visible, show no evidence of emission features characteristic of a hot plasma.Comment: 30 Pages, 11 Figure
    corecore