328 research outputs found
Measurement of the Average Energy and Multiplicity of Prompt-Fission-Neutrons from 238U(n,f) and 237 Np(n,f) from 1 to 200 MeV.
Taking advantage of the neutron source of the LANCSE, it has been possible to obtain a measure of the velocity distribution and the number of prompt-neutrons emitted in the neutron-induced fission of {sup 238}U and {sup 237}Np over a broad incident neutron energy range. The mean kinetic energy was extracted and is shown as the function of the incident-neutron energy. We confirm here the observation, for both reactions, of a dip around the second chance fission which is explained by the lower kinetic energy of the pre-fission neutrons. Such a observation is reproduced by Los Alamos model as implemented at Bruyeres le Chatel and by the Maslov model. As far as the neutron multiplicity is concerned, a similar dip is observed. However, such a behavior is not present in data measured by other groups
Isotopic Resolution of Fission Fragments from 238U+12C Transfer and Fusion Reactions
Expérience GANILInternational audienceRecent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238U beam and a 12C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments
Quantum-state control in optical lattices
We study the means to prepare and coherently manipulate atomic wave packets
in optical lattices, with particular emphasis on alkali atoms in the
far-detuned limit. We derive a general, basis independent expression for the
lattice operator, and show that its off-diagonal elements can be tailored to
couple the vibrational manifolds of separate magnetic sublevels. Using these
couplings one can evolve the state of a trapped atom in a quantum coherent
fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We
explore the use of atoms bound in optical lattices to study quantum tunneling
and the generation of macroscopic superposition states in a double-well
potential. Far-off-resonance optical potentials lend themselves particularly
well to reservoir engineering via well controlled fluctuations in the
potential, making the atom/lattice system attractive for the study of
decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199
Sex and adverse events of adjuvant chemotherapy in colon cancer: an analysis of 34,640 patients in the ACCENT database
BACKGROUND: Adjuvant chemotherapy is a standard treatment option for patients with stage III and high-risk stage II colon cancer. Sex is one of several factors responsible for the wide inter-patient variability in drug responses. Amalgamated data on the effect of sex on the toxicity of current standard adjuvant treatment for colorectal cancer are missing. METHODS: The objective of our study was to compare incidence and severity of major toxicities of fluoropyrimidine- (5FU or capecitabine) based adjuvant chemotherapy, with or without oxaliplatin, between male and female patients after curative surgery for colon cancer. Adult patients enrolled in 27 relevant randomized trials included in the ACCENT (Adjuvant Colon Cancer End Points) database, a large, multi-group, international data repository containing individual patient data, were included. Comparisons were conducted using logistic regression models (stratified by study and treatment arm) within each type of adjuvant chemotherapy (5FU, FOLFOX, capecitabine, CAPOX, and FOLFIRI). The following major toxicities were compared (grade III or IV and grade I-IV, according to National Cancer Institute Common Terminology Criteria [NCI-CTC] criteria, regardless of attribution): nausea, vomiting, nausea or vomiting, stomatitis, diarrhea, leukopenia, neutropenia, thrombocytopenia, anemia, and neuropathy (in patients treated with oxaliplatin). RESULTS: Data from 34 640 patients were analyzed. Statistically significant and clinically relevant differences in the occurrence of grade III or IV nonhematological {especially nausea (5FU: odds ratio [OR] = 2.33, 95% confidence interval [CI] = 1.90 to 2.87, P < .001; FOLFOX: OR = 2.34, 95% CI = 1.76 to 3.11, P < .001), vomiting (5FU: OR = 2.38, 95% CI = 1.86 to 3.04, P < .001; FOLFOX: OR = 2.00, 95% CI = 1.50 to 2.66, P < .001; CAPOX: OR = 2.32, 95% CI = 1.55 to 3.46, P < .001), and diarrhea (5FU: OR = 1.35, 95% CI = 1.21 to 1.51, P < .001; FOLFOX: OR = 1.60, 95% CI = 1.35 to 1.90, P < .001; FOLFIRI: OR = 1.57, 95% CI = 1.25 to 1.97, P < .001)} as well as hematological toxicities (neutropenia [5FU: OR = 1.55, 95% CI = 1.37 to 1.76, P < .001; FOLFOX: OR = 1.96, 95% CI = 1.71 to 2.25, P < .001; FOLFIRI: OR = 2.01, 95% CI = 1.66 to 2.43, P < .001; capecitabine: OR = 4.07, 95% CI = 1.84 to 8.99, P < .001] and leukopenia [5FU: OR = 1.74, 95% CI = 1.40 to 2.17, P < .001; FOLFIRI: OR = 1.75, 95% CI = 1.28 to 2.40, P < .001]) were observed, with women being consistently at increased risk. CONCLUSIONS: Our analysis confirms that women with colon cancer receiving adjuvant fluoropyrimidine-based chemotherapy are at increased risk of toxicity. Given the known sex differences in fluoropyrimidine pharmacokinetics, sex-specific dosing of fluoropyrimidines warrants further investigation
Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions
Complex structural effects in the nuclide production from the projectile
fragmentation of 1 A GeV 238U nuclei in a titanium target are reported. The
structure seems to be insensitive to the excitation energy induced in the
reaction. This is in contrast to the prominent structural features found in
nuclear fission and in transfer reactions, which gradually disappear with
increasing excitation energy. Using the statistical model of nuclear reactions,
relations to structural effects in nuclear binding and in the nuclear level
density are demonstrated.Comment: 19 pages, 14 figures, background information on
http://www-w2k.gsi.de/kschmidt
- …