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Abstract. Recent results from an experiment at GANIL, performed to investigate the main prop-
erties of fission-fragment yields and energy distributionsin different fissioning nuclei as a function
of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in
inverse kinematics between a238U beam and a12C target produced different actinides, within a
range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the
target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of
the transfer reaction. The large-acceptance spectrometerVAMOS was used to identify the mass,
atomic number and charge state of the fission fragments in flight. As a result, the characteristics of
the fission-fragment isotopic distributions of a variety ofneutron-rich actinides are observed for the
first time over the complete range of fission fragments.

Keywords: neutron-rich actinides, transfer-induced fission, fragment identification, inverse kine-
matics
PACS: 24.75.+i,24.87.+y,25.70.Jj,25.70.Hi

INTRODUCTION

Fission produces the largest collective motion of nucleonsinside the nucleus, while, at
the same time, is also strongly influenced by the structure ofthe fissioning nucleus. At
low excitation energy, shell structure and pairing correlations mark the main features of
the fragment distribution. It is well-known that the fission-fragment mass distribution of
most actinides in the range of masses from 230 to 256 are characterized by two or even
three-humped shapes. This feature has been understood as a superposition of indepen-
dent fission modes [1, 2] corresponding to different paths inthe potential surface of the
fission process [2, 3]. The average mass of the heavy fragmentwas observed to remain
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constant aroundA∼ 140 in spontaneous and neutron-induced fission [3]. Similarly, cam-
paigns of fusion-fission experiments showed a constant heavy-fragment average mass at
A ∼ 132 andA ∼ 140 [4]. These experimental results are well described witha sym-
metric and two asymmetric fission channels, the asymmetric modes being commonly
associated with spherical and deformed neutron shells inN = 82 andN ∼ 84−90 [4].
Recently, the study of fragment atomic-number distributionin low-energy fission of
neutron-deficient actinides showed the heavy fragment distribution centered onZ ≈ 54,
independently of the fissioning system [5]. A detailed analysis of these data showed the
two asymmetric modes being centered onZ ∼ 53 andZ ∼ 55, for all identified actinides
[6]. These results are somehow surprising when compared with the neutron-shell influ-
ence described above, for which a change of the average atomic number of the heavy
fragment with the mass of the fissioning system was expected.The controversy between
the independent measurements of fragment mass and atomic number sets a challenge
on the theoretical description of fission, and namely on whatdrives the process. The
existence of systematic measurements of fission characteristics over a broad range of
fissioning systems is very important to constraint the different models. Nonetheless, as
different quantities were measured in different sets of data (fission-fragment mass in di-
rect kinematics, or atomic number in the case of inverse-kinematics experiments), the si-
multaneous measurement of both mass and atomic number of fragments is imperatively
required to go further. Unfortunately, information on fullisotopic-fragment distributions
is very scarce; it mainly consists of thermal neutron-induced fission of a limited number
of actinides [7, 8, 9, 10, 11, 12, 13, 14, 15], and is restricted to the light fragments, due
to technical difficulties in identifying high-Z products in direct kinematics. The isotopic
distribution of the heaviest fragment can be determined using radio-chemical techniques
[16, 17], but with poor precision and in a reduced range of thetotal production.

Another important characteristic of low-energy fission in even-Z nuclei is the en-
hanced production of fragments with an even number of protons. This has been inter-
preted as a signature that completely-paired proton configurations are preserved up to
the scission point [13, 18]. The difference between even andodd element yields may be
related to the heating of the nucleus undergoing fission on its way to the scission point,
and hence to the viscosity of cold nuclear matter. Experimentally, the even-odd stagger-
ing has been observed to depend strongly on the fissility of the fissioning nucleus [8],
its excitation energy [19], and the fragment distribution asymmetry [11, 14, 20]. As dis-
cussed in these proceedings[21], the recent results with inverse kinematics show that the
dependence of the even-odd effect with fissility is stronglyaffected by the asymmetry
of the fission-fragment distribution, and puts forward a dissipated energy independent
of fissility. These results show the need for more precise information on isotopic-yield
distributions at symmetry, and for wider systematics than the present ones.

The points discussed above indicate that a deeper insight into fission dynamics can
only be gained with a systematic and simultaneous measurement of complete mass and
atomic number distributions of fission fragments. This is the aim of the present work,
based on multi-nucleon transfer-induced fission in inversekinematics with the VAMOS
spectrometer [22] at GANIL. In addition, and in order to continue the systematic study
of neutron-deficient actinides at GSI, the present experiment focus on the production of
fissioning actinides in the neutron-rich region.
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FIGURE 1. Experimental set-up. The VAMOS spectrometer and associated detectors are depicted in
the figure. The dE-E telescope SPIDER is placed between the target (in grey) and the magnets of the
spectrometer (in red)

MULTI-NUCLEON TRANSFER-INDUCED FISSION OF 238U IN
INVERSE KINEMATICS

The experiment aimed to produce different fissioning systems by multi-nucleon transfer
reactions between a 6.1 MeV/u238U beam and a 100µg/cm2 12C target. The resulting
systems cover a region of neutron-rich actinides, from U to Cm. The beam energy was
chosen as a compromise between the fission production, the geometry of detection,
and the opening of other reaction channels. At this energy, around 10% above the
Coulomb barrier, a total fission cross-section around 300 mb was previously measured
for 12C+232Th, with a total transfer-fission probability ten times lower than fusion-fission
[23]. A similar cross-section is expected for the present reaction. Different fissioning
systems are produced from the interaction of the U beam and the carbon target: inelastic
collisions provide a range of excitation energy to the238U beam, while transfer reactions
produce a collection actinides, always in a range of excitation energy below 30 MeV.
In addition, fusion reactions produce fission of250Cf with ∼40 MeV of excitation
energy. The compound systems are expected to have angular momenta lower than 20
h̄. The fission fragments produced will cover a wide range of energy (2-10 MeV/u),
mass (90-150), atomic number (30-60), and charge states (∼10 charges per isotope).
Inverse kinematics of in-flight fission at 6.1 MeV/u confines the angular distribution of
the fragments in a cone of about 25 deg in laboratory frame.

Experimental set-up

The kinematics reconstruction of the direct reactions (inelastic scattering and multi-
nucleon transfer) allows the identification of the resulting fissioning systems, along with
an estimation of their excitation energy. In addition, the characteristics of in-flight fission
in inverse kinematics make the detection of the complete fragment distribution possible.
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FIGURE 2. Left panel: Schematic drawing of the SPIDER-detector ensemble. Right Panel: Identifica-
tion of target-like recoil in SPIDER. Correlation between dE-E shows the different recoil species produced
in inelastic and transfer reactions. The corresponding fissioning elements are indicated in parenthesis.

These tasks are performed by two dedicated detection systems: the dE-E SPIDER
telescope, and the VAMOS spectrometer (see Fig. 1).

SPIDER (Silicon Particle Identification DEtector Ring) is used to detect and identify
the target-like recoils, and to reconstruct the kinematicsof transfer reactions. It consists
of two annular silicon detectors (see Fig. 2). Both are 48 mm radius double-sided
detectors with an inner hole of 24 mm radius. They are segmented into 16 rings of 1.5
mm radius in one side, and 16 sectors in the other. The first detector, used to measured
energy loss (dE), is 65µm thick, while the second one, for residual energy (Eres), is 1
mm thick. The two detectors are placed 32 mm after the target,with a separation of 4
mm between them. The SPIDER ensemble detects and identifies the target-like recoil by
means of dE-E correlation (being E=dE+Eres). The reconstruction of direct kinematics
is done with the total energy measurement and the determination of the recoil angle.
The segmentation of the detectors allows the measurement ofthe recoil angle with∼1
deg of geometrical uncertainty; depending on the reaction,this is translated in∼2 MeV
of excitation-energy resolution, in both the recoil and thefissioning system. Figure 2
shows the dE-E correlation with the identification of the different recoil species. Recoil
identification resulted in the detection of C, B, Be, Li and He. Despite the isotopic
identification of the target-like recoil is not achieved, the most probable channels may be
estimated from theQgg values [24]. These correspond to238U, 239Np, 240Pu, and243Am
as fissioning systems, respectively. In addition, fusion-fission reactions are identified by
the absence of target-like recoil.

The fission fragments pass through the inner hole of SPIDER, and are identified in the
VAMOS spectrometer and its associated detectors (see Fig. 1). The whole spectrometer
can be rotated around the target to cover a specific angular region. In this case, VAMOS
is rotated by 20 deg in order to cover the angular region with largest fragment production,
close to the edge of the fission cone. This configuration allows the detection of, at most,
one of the two fragments per fission. In this experiment, the geometrical acceptance
of VAMOS is ∼14 deg in the horizontal plane, and∼3 deg in the vertical plane; the
detection area accepts particles within±10 % of the central magnetic rigidity. In order
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FIGURE 3. Fragment-Z identification in VAMOS. Left panel: dE-E correlation. The dashed lines
correspond to the analytical description of dE-E correlation for eachZ. Right panel:Z projection along
the analytical lines. The shape of the distribution is due tothe addition of different sets of data not yet
normalized.

to cover the most of the momentum and charge-state distributions, different values of
the central magnetic rigidity were used during the experiment. Finally, the ensemble of
the different magnetic settings covers from 1.010 to 1.360 Tm of magnetic rigidity. The
detection area in VAMOS consisted of two Drift Chambers (DC) tomeasure particle
positions and angles, a Secondary-electron Detector (SeD)to measure the time of flight,
an Ionization Chamber (IC) to measure energy loss, and a wall oftwenty-one Silicon
detectors to measure the residual energy of the particle (see [25] for more details on the
detectors). In addition, two clovers of the Germanium-array EXOGAM [26] were placed
around the target to identify nuclear levels in the fission fragments.

Isotopic identification of fission fragments

The information obtained by the detectors in VAMOS allows a complete identification
of the fission fragments in mass (A), atomic number (Z), charge state (q), and kinetic
energy (KE). In addition, the ion-optical reconstruction gives angular information of
the fragment at the target position (before entering VAMOS). The total energy of the
particle is the sum of the energy loss in the IC and the residual energy measured in the
Si wall. In addition, estimations of energy losses in the target, windows of detectors,
etc. is also added. The dE-E correlation allows to separate the differentZ detected in
VAMOS, as seen in Fig. 3. Around thirty different species, over a range of more than
600 MeV, are observed. At low energy, the slope of the lines changes due to the Bragg
peak produced by low-energy particles stopping in the IC. Thelines in Fig. 3 are the
result of an analytical approach to describe the dE-E behaviour. In this approach, the
energy-loss dE depends on the velocity of the particle, and on an effective charge. The
latter depends on theZ of the particle, and also on the velocity. In addition, corrections
due to electron-shell closure are taken into account. This analytical description allows
to assign aZ to individual events. The resolution, along the whole energy range, is
∆Z/Z ≈ 1.5·10−2.
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FIGURE 4. Fragment-A identification in VAMOS. Left panel:A-A/q correlation. The dashed lines
separateA-A/q groups of fragments with the same charge stateq. Right panel:A distribution of a single
q. The distribution is obtained withA = q×A/q. The shape of the distribution is due to the addition of
different sets of data not yet normalized.

Horizontal and vertical positions measured in the two DCs areused to determine the
total path from the target, the magnetic rigidity (Bρ), and the scattering angle of the
particle in laboratory frame. This is done by mapping all possible trajectories along the
spectrometer, as a function of Bρ, angle and position of the particle (more details can be
found in [25]). The time of flight, calculated between the SeDand the high frequency of
the cyclotron, is combined with the reconstructed path to obtain the velocity. The mass
of the fragments is measured, in a first step, with their totalenergy and velocity. The
reconstructed Bρ and velocity are used to determined theA/q ratio. Figure 4 shows
the relationA vs. A/q, where the different fragments can be identified in mass and
charge state. TheA identification is done in a second step that takes profit from the
better resolution inA/q: fragments with the sameq form the diagonal lines shown in
Fig. 4; the finalA identification is obtained multiplying theA/q of systems contained
in the same diagonal by the correspondingq. This procedure allows the identification
of more than 70 masses, fromA ≈ 80 to 150, with a resolution of∆A/A ≈ 0.6 · 10−2

(see Fig. 4). The mass resolution in this experiment was limited by the time of flight
measurement, with 1 ns of resolution over∼170 ns of time of flight.

In addition, the correlation between the nuclear levels identified with the EXOGAM
detectors, and the isotopic identification obtained in the spectrometer allows to assure
the unambiguous assignment ofZ, A andq for all fragments detected in VAMOS.

CONCLUSIONS AND PERSPECTIVES

The data analysis of the experiment is currently in its initial stages, however, some
important achievements can already be highlighted. Multi-nucleon transfer reactions
between238U and12C produced a range of fissioning nuclei between U and Cm, already
identified by dE-E correlation. In addition, fusion-fissionreactions allowed to include
250Cf in the collection of fissioning nuclei to study.
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FIGURE 5. Atomic numberZ versus charge-stateq (left), and versus neutron numberN (right) for
the whole fission-fragment production in this experiment. The limits of observed isotopes are shown for
reference in the right panel.

The measurement of fission fragments in inverse kinematics using the VAMOS
spectrometer allowed, for the first time in a single experiment, the complete character-
ization of the whole distribution of fission fragments alongwith the fissioning system.
More than 300 isotopes are identified in mass, atomic number,and charge state (see Fig.
5). The kinematic properties of the fragments are also determined by measuring the ki-
netic energy and angle of fragments. These results show already the power of the present
experimental approach, resulting in the most complete experimental characterization of
fission in minor actinides so far.

The next steps of the analysis will concern the determination of fission fragment
isotopic yields, by normalising the different dipole settings in order to reconstruct the
velocity distribution as well as theq-state distribution for each of the (Z,A) fragment.
Energy spectra, and angular distributions will also derivefrom these results. For the first
time, correlations between these observables will be possible, revealing shell effects, and
the proton or neutron influence in the fission process. Also, even-odd staggering either
in protons and neutrons can be explored in the whole fragmentdistribution. Finally,
these features of fragments distribution are to be exploredas a function of the entrance
channel,i.e. the fissioning system and its excitation energy.
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