540 research outputs found

    Family of Commuting Operators for the Totally Asymmetric Exclusion Process

    Full text link
    The algebraic structure underlying the totally asymmetric exclusion process is studied by using the Bethe Ansatz technique. From the properties of the algebra generated by the local jump operators, we explicitly construct the hierarchy of operators (called generalized hamiltonians) that commute with the Markov operator. The transfer matrix, which is the generating function of these operators, is shown to represent a discrete Markov process with long-range jumps. We give a general combinatorial formula for the connected hamiltonians obtained by taking the logarithm of the transfer matrix. This formula is proved using a symbolic calculation program for the first ten connected operators. Keywords: ASEP, Algebraic Bethe Ansatz. Pacs numbers: 02.30.Ik, 02.50.-r, 75.10.Pq.Comment: 26 pages, 1 figure; v2: published version with minor changes, revised title, 4 refs adde

    Symmetric Exclusion Process with a Localized Source

    Full text link
    We investigate the growth of the total number of particles in a symmetric exclusion process driven by a localized source. The average total number of particles entering an initially empty system grows with time as t^{1/2} in one dimension, t/log(t) in two dimensions, and linearly in higher dimensions. In one and two dimensions, the leading asymptotic behaviors for the average total number of particles are independent on the intensity of the source. We also discuss fluctuations of the total number of particles and determine the asymptotic growth of the variance in one dimension.Comment: 7 pages; small corrections, references added, final versio

    Thermal conductivity in harmonic lattices with random collisions

    Get PDF
    We review recent rigorous mathematical results about the macroscopic behaviour of harmonic chains with the dynamics perturbed by a random exchange of velocities between nearest neighbor particles. The random exchange models the effects of nonlinearities of anharmonic chains and the resulting dynamics have similar macroscopic behaviour. In particular there is a superdiffusion of energy for unpinned acoustic chains. The corresponding evolution of the temperature profile is governed by a fractional heat equation. In non-acoustic chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the dynamical large deviations for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities

    Phase diagram of the ABC model with nonconserving processes

    Full text link
    The three species ABC model of driven particles on a ring is generalized to include vacancies and particle-nonconserving processes. The model exhibits phase separation at high densities. For equal average densities of the three species, it is shown that although the dynamics is {\it local}, it obeys detailed balance with respect to a Hamiltonian with {\it long-range interactions}, yielding a nonadditive free energy. The phase diagrams of the conserving and nonconserving models, corresponding to the canonical and grand-canonical ensembles, respectively, are calculated in the thermodynamic limit. Both models exhibit a transition from a homogeneous to a phase-separated state, although the phase diagrams are shown to differ from each other. This conforms with the expected inequivalence of ensembles in equilibrium systems with long-range interactions. These results are based on a stability analysis of the homogeneous phase and exact solution of the hydrodynamic equations of the models. They are supported by Monte-Carlo simulations. This study may serve as a useful starting point for analyzing the phase diagram for unequal densities, where detailed balance is not satisfied and thus a Hamiltonian cannot be defined.Comment: 32 page, 7 figures. The paper was presented at Statphys24, held in Cairns, Australia, July 201

    Hydrodynamic limit for a boundary driven stochastic lattice gas model with many conserved quantities

    Full text link
    We prove the hydrodynamic limit for a particle system in which particles may have different velocities. We assume that we have two infinite reservoirs of particles at the boundary: this is the so-called boundary driven process. The dynamics we considered consists of a weakly asymmetric simple exclusion process with collision among particles having different velocities

    Modeling the Jovian subnebula: I - Thermodynamical conditions and migration of proto-satellites

    Full text link
    We have developed an evolutionary turbulent model of the Jovian subnebula consistent with the extended core accretion formation models of Jupiter described by Alibert et al. (2005b) and derived from Alibert et al. (2004,2005a). This model takes into account the vertical structure of the subnebula, as well as the evolution of the surface density as given by an α\alpha-disk model and is used to calculate the thermodynamical conditions in the subdisk, for different values of the viscosity parameter. We show that the Jovian subnebula evolves in two different phases during its lifetime. In the first phase, the subnebula is fed through its outer edge by the solar nebula as long as it has not been dissipated. In the second phase, the solar nebula has disappeared and the Jovian subdisk expands and gradually clears with time as Jupiter accretes the remaining material. We also demonstrate that early generations of satellites formed during the beginning of the first phase of the subnebula cannot survive in this environment and fall onto the proto-Jupiter. As a result, these bodies may contribute to the enrichment of Jupiter in heavy elements. Moreover, migration calculations in the Jovian subnebula allow us to follow the evolution of the ices/rocks ratios in the proto-satellites as a function of their migration pathways. By a tempting to reproduce the distance distribution of the Galilean satellites, as well as their ices/rocks ratios, we obtain some constraints on the viscosity parameter of the Jovian subnebula.Comment: Accepted in Astronomy and Astrohpysic

    Towards Rigorous Derivation of Quantum Kinetic Equations

    Full text link
    We develop a rigorous formalism for the description of the evolution of states of quantum many-particle systems in terms of a one-particle density operator. For initial states which are specified in terms of a one-particle density operator the equivalence of the description of the evolution of quantum many-particle states by the Cauchy problem of the quantum BBGKY hierarchy and by the Cauchy problem of the generalized quantum kinetic equation together with a sequence of explicitly defined functionals of a solution of stated kinetic equation is established in the space of trace class operators. The links of the specific quantum kinetic equations with the generalized quantum kinetic equation are discussed.Comment: 25 page

    Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems

    Full text link
    We prove Lieb-Robinson bounds for the dynamics of systems with an infinite dimensional Hilbert space and generated by unbounded Hamiltonians. In particular, we consider quantum harmonic and certain anharmonic lattice systems

    Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

    Full text link
    For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current QtQ_t during time tt through the origin when, in the initial condition, the sites are occupied with density ρa\rho_a on the negative axis and with density ρb\rho_b on the positive axis. All the cumulants of QtQ_t grow like t\sqrt{t}. In the range where QttQ_t \sim \sqrt{t}, the decay exp[Qt3/t]\exp [-Q_t^3/t] of the distribution of QtQ_t is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities recently derived by Tracy and Widom for exclusion processes on the infinite line.Comment: 2 figure
    corecore