58 research outputs found

    Genetic characterisation of farmed rainbow trout in Norway: intra- and inter-strain variation reveals potential for identification of escapees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rainbow trout (<it>Oncorhynchus mykiss</it>) is one of the most important aquaculture species in the world, and Norway is one of the largest producers. The present study was initiated in response to a request from the Norwegian police authority to identify the farm of origin for 35 escaped rainbow trout captured in a fjord. Eleven samples, each consisting of approximately 47 fish, were collected from the three farms operating in the fjord where the escapees were captured. In order to gain a better general understanding of the genetic structure of rainbow trout strains used in Norwegian aquaculture, seven samples (47 fish per sample) were collected from six farms located outside the region where the escapees were captured. All samples, including the escapees, were genotyped with 12 microsatellite loci.</p> <p>Results</p> <p>All samples displayed considerable genetic variability at all loci (mean number of alleles per locus per sample ranged from 5.4–8.6). Variable degrees of genetic differentiation were observed among the samples, with pair-wise <it>F</it><sub>ST </sub>values ranging from 0–0.127. Self-assignment tests conducted among the samples collected from farms outside the fjord where the escapees were observed gave an overall correct assignment of 82.5%, demonstrating potential for genetic identification of escapees. In the "real life" assignment of the 35 captured escapees, all were excluded from two of the samples included as controls in the analysis, and 26 were excluded from the third control sample. In contrast, only 1 of the escapees was excluded from the 11 pooled samples collected on the 3 farms operating in the fjord.</p> <p>Conclusion</p> <p>Considerable genetic variation exists within and among rainbow trout strains farmed in Norway. Together with modern statistical methods, this will provide commercial operators with a tool to monitor breeding and fish movements, and management authorities with the ability to identify the source of escapees. The data generated in this study were used by the Norwegian police to initiate an investigation of the company operating the three farms in the fjord where escapees were observed.</p

    Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression

    Get PDF
    Background&nbsp; Due to selective breeding, domesticated and wild Atlantic salmon are genetically diverged, which raises concerns about farmed escapees having the potential to alter the genetic composition of wild populations and thereby disrupting local adaptation. Documenting transcriptional differences between wild and domesticated stocks under controlled conditions is one way to explore the consequences of domestication and selection. We compared the transcriptomes of wild and domesticated Atlantic salmon embryos, by using a custom 44k oligonucleotide microarray to identify perturbed gene pathways between the two stocks, and to document the inheritance patterns of differentially-expressed genes by examining gene expression in their reciprocal hybrids.&nbsp; Results&nbsp; Data from 24 array interrogations were analysed: four reciprocal cross types (W♀&times;W♂, D♀&times;W♂; W♀&times;D♂, D♀&times;D♂)&times;six biological replicates. A common set of 31,491 features on the microarrays passed quality control, of which about 62% were assigned a KEGG Orthology number. A total of 6037 distinct genes were identified for gene-set enrichment/pathway analysis. The most highly enriched functional groups that were perturbed between the two stocks were cellular signalling and immune system, ribosome and RNA transport, and focal adhesion and gap junction pathways, relating to cell communication and cell adhesion molecules. Most transcripts that were differentially expressed between the stocks were governed by additive gene interaction (33 to 42%). Maternal dominance and over-dominance were also prevalent modes of inheritance, with no convincing evidence for a stock effect.&nbsp; Conclusions&nbsp; Our data indicate that even at this relatively early developmental stage, transcriptional differences exist between the two stocks and affect pathways that are relevant to wild versus domesticated environments. Many of the identified differentially perturbed pathways are involved in organogenesis, which is expected to be an active process at the eyed egg stage. The dominant effects are more largely due to the maternal line than to the origin of the stock. This finding is particularly relevant in the context of potential introgression between farmed and wild fish, since female escapees tend to have a higher spawning success rate compared to males

    A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances have lead to the rapid increase in availability of single nucleotide polymorphisms (SNPs) in a range of organisms, and there is a general optimism that SNPs will become the marker of choice for a range of evolutionary applications. Here, comparisons between 300 polymorphic SNPs and 14 short tandem repeats (STRs) were conducted on a data set consisting of approximately 500 Atlantic salmon arranged in 10 samples/populations.</p> <p>Results</p> <p>Global F<sub>ST </sub>ranged from 0.033-0.115 and -0.002-0.316 for the 14 STR and 300 SNP loci respectively. Global F<sub>ST </sub>was similar among 28 linkage groups when averaging data from mapped SNPs. With the exception of selecting a panel of SNPs taking the locus displaying the highest global F<sub>ST </sub>for each of the 28 linkage groups, which inflated estimation of genetic differentiation among the samples, inferred genetic relationships were highly similar between SNP and STR data sets and variants thereof. The best 15 SNPs (30 alleles) gave a similar level of self-assignment to the best 4 STR loci (83 alleles), however, addition of further STR loci did not lead to a notable increase assignment whereas addition of up to 100 SNP loci increased assignment.</p> <p>Conclusion</p> <p>Whilst the optimal combinations of SNPs identified in this study are linked to the samples from which they were selected, this study demonstrates that identification of highly informative SNP loci from larger panels will provide researchers with a powerful approach to delineate genetic relationships at the individual and population levels.</p

    Rømt oppdrettslaks i vassdrag i 2020 - Rapport fra det nasjonale overvåkningsprogrammet

    Get PDF
    I 2014 ble et nytt nasjonalt overvåkningsprogram for rømt oppdrettslaks i vassdrag utformet og etablert på oppdrag fra Fiskeridirektoratet etter føringer fra Nærings- og Fiskeridepartementet. Dette overvåkingsprogrammet bygger på tidligere overvåking som ble etablert i 1989. Det overordnete målet for programmet er å øke både kvantitet og kvalitet på overvåkningsdata som gir grunnlag for å estimere prosentandel rømt oppdrettslaks i vassdrag. Denne rapporten oppsummerer resultatene fra undersøkelser utført i 2020.publishedVersio

    Temporal and spatial instability in neutral and adaptive (MHC) genetic variation in marginal salmon populations

    Get PDF
    The role of marginal populations for the long-term maintenance of species’ genetic diversity and evolutionary potential is particularly timely in view of the range shifts caused by climate change. The Centre-Periphery hypothesis predicts that marginal populations should bear reduced genetic diversity and have low evolutionary potential. We analysed temporal stability at neutral microsatellite and adaptive MHC genetic variation over five decades in four marginal Atlantic salmon populations located at the southern limit of the species’ distribution with a complicated demographic history, which includes stocking with foreign and native salmon for at least 2 decades. We found a temporal increase in neutral genetic variation, as well as temporal instability in population structuring, highlighting the importance of temporal analyses in studies that examine the genetic diversity of peripheral populations at the margins of the species’ range, particularly in face of climate change
    • …
    corecore