270 research outputs found

    Group Education for patients with rheumatoid arthritis

    Get PDF
    Patients with rheumatoid arthritis must learn to adjust their exercise, rest and medication to the varying activity of the disease. Patient education can help patients in making the right decisions about adjustments in their treatment regimen and in attaining Âżself-managementÂż behaviors. We developed a group education program based on social learning theory and the `Arthritis Self Management CourseÂż developed in the USA by Lorig. Goal of the program is the strengthening of self-efficacy, outcome expectations and self-management behaviors of RA patients which may lead to better health status. The program has been evaluated in an experimental design. We established significant positive effects of the group training on functional disability, joint tenderness, practice of relaxation and physical exercises, self-management behavior, outcome expectations, self-efficacy function and knowledge. After 14 months we still found effects on practice of physical exercises, self-efficacy function and knowledge

    Calcium adsorption and displacement: characterization of lipid monolayers and their interaction with membrane-active peptides/proteins

    Get PDF
    BACKGROUND: The first target of antimicrobial peptides (AMPs) is the bacterial membrane. In the case of Gram-negative bacteria this is the outer membrane (OM), the lipid composition of which is extremely asymmetric: Whereas the inner leaflet is composed of a phospholipid mixture, the outer leaflet is made up solely from lipopolysaccharides (LPSs). LPS, therefore, represents the first target of AMPs. The binding and intercalation of polycationic AMPs is driven by the number and position of negatively charged groups of the LPS. Also, proteins other than cationic AMPs can interact with LPS, e.g. leading eventually to a neutralization of the endotoxic effects of LPS. We compared different biophysical techniques to gain insight into the properties of the electrical surface potentials of lipid monolayers and aggregates composed of LPSs and various phospholipids and their interaction with peptides and proteins. RESULTS: The net negative charge calculated from the chemical structure of the phospholipid and LPS molecules is linearly correlated with the adsorption of calcium to two-dimensional lipid monolayers composed of the respective lipids. However, the ζ-potentials determined by the electrophoretic mobility of LPS aggregates can only be interpreted by assuming a dependence of the plane of shear on the number of saccharides and charged groups. Various peptides and proteins were able to displace calcium adsorbed to monolayers. CONCLUSION: To characterize the electrical properties of negatively charged phospholipids and LPSs and their electrostatic interaction with various polycationic peptides/proteins, the adsorption of calcium to and displacement from lipid monolayers is a suitable parameter. Using the calcium displacement method, the binding of peptides to monolayers can be determined even if they do not intercalate. The interpretation of ζ-potential data is difficulty for LPS aggregates, because of the complex three-dimensional structure of the LPS molecules. However, the influence of peptides/proteins on the ζ-potential can be used to characterize the underlying interaction mechanisms

    The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features

    Get PDF
    AbstractThe chemical composition of the mycocidal complex (formerly known as microcin) secreted by Cryptococcus humicola was investigated by chemical, mass spectrometric and nuclear magnetic resonance methods. The results indicate that the mycocidal complex is composed of glycolipids with a highly acetylated (up to five acetyl groups) cellobiose backbone [ÎČ-D-Glcp-(1â€Č→4)-ÎČ-D-Glcp] linked to the ω-hydroxyl group of α,ω-dihydroxy palmitate [16:0-α,ω-di-OH] with an unsubstituted carboxyl group. The acyl chain forming aglycon can be replaced by [18:0-(α,ω-di-OH)], [18:0-(α,ω-1,ω-tri-OH)], and [18:0-(α,ω-2,ω-tri-OH)]. The complex has a comparatively high surface activity; 0.5 mg/ml of it reduced the surface tension of 0.1 M NaHCO3 from 71 mN/m to 37 mN/m and interfacial tension against n-hexadecane from 39 mN/m to 10 mN/m. The critical micelle concentration of the complex at pH 4.0, determined by the fluorometric method with N-phenyl-1-naphthylamine as fluorescent probe and by the De Nouy ring method, was 2×10−5 M (taking the average molecular mass of the complex to be 750); it did not depend on the presence of 100 mM KCl and was an order of magnitude higher at pH 7.0. By fluorescence resonance energy transfer spectroscopy with N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-phosphatidylethanolamine as energy donor and N-(rhodamine B sulfonyl)-phosphatidylethanolamine as energy acceptor the complex was shown to intercalate into the liposomal lipid matrix. Primary lesions caused by the complex in planar lipid bilayers were revealed as short-living current fluctuations of a broad spectrum of amplitudes. The mycocidal effect of the complex is suggested to be associated with its detergent-like properties

    Solvent contribution to the stability of a physical gel characterized by quasi-elastic neutron scattering

    Full text link
    The dynamics of a physical gel, namely the Low Molecular Mass Organic Gelator {\textit Methyl-4,6-O-benzylidene-α\alpha -D-mannopyranoside (α\alpha-manno)} in water and toluene are probed by neutron scattering. Using high gelator concentrations, we were able to determine, on a timescale from a few ps to 1 ns, the number of solvent molecules that are immobilised by the rigid network formed by the gelators. We found that only few toluene molecules per gelator participate to the network which is formed by hydrogen bonding between the gelators' sugar moieties. In water, however, the interactions leading to the gel formations are weaker, involving dipolar, hydrophobic or π−π\pi-\pi interactions and hydrogen bonds are formed between the gelators and the surrounding water. Therefore, around 10 to 14 water molecules per gelator are immobilised by the presence of the network. This study shows that neutron scattering can give valuable information about the behaviour of solvent confined in a molecular gel.Comment: Langmuir (2015

    Mechanisms of Transcranial Doppler Ultrasound phenotypes in paediatric cerebral malaria remain elusive.

    Get PDF
    BACKGROUND: Cerebral malaria (CM) results in significant paediatric death and neurodisability in sub-Saharan Africa. Several different alterations to typical Transcranial Doppler Ultrasound (TCD) flow velocities and waveforms in CM have been described, but mechanistic contributors to these abnormalities are unknown. If identified, targeted, TCD-guided adjunctive therapy in CM may improve outcomes. METHODS: This was a prospective, observational study of children 6 months to 12 years with CM in Blantyre, Malawi recruited between January 2018 and June 2021. Medical history, physical examination, laboratory analysis, electroencephalogram, and magnetic resonance imaging were undertaken on presentation. Admission TCD results determined phenotypic grouping following a priori definitions. Evaluation of the relationship between haemodynamic, metabolic, or intracranial perturbations that lead to these observed phenotypes in other diseases was undertaken. Neurological outcomes at hospital discharge were evaluated using the Paediatric Cerebral Performance Categorization (PCPC) score. RESULTS: One hundred seventy-four patients were enrolled. Seven (4%) had a normal TCD examination, 57 (33%) met criteria for hyperaemia, 50 (29%) for low flow, 14 (8%) for microvascular obstruction, 11 (6%) for vasospasm, and 35 (20%) for isolated posterior circulation high flow. A lower cardiac index (CI) and higher systemic vascular resistive index (SVRI) were present in those with low flow than other groups (p \u3c 0.003), though these values are normal for age (CI 4.4 [3.7,5] l/min/m2, SVRI 1552 [1197,1961] dscm-5m2). Other parameters were largely not significantly different between phenotypes. Overall, 118 children (68%) had a good neurological outcome. Twenty-three (13%) died, and 33 (19%) had neurological deficits. Outcomes were best for participants with hyperaemia and isolated posterior high flow (PCPC 1-2 in 77 and 89% respectively). Participants with low flow had the least likelihood of a good outcome (PCPC 1-2 in 42%) (p \u3c 0.001). Cerebral autoregulation was significantly better in children with good outcome (transient hyperemic response ratio (THRR) 1.12 [1.04,1.2]) compared to a poor outcome (THRR 1.05 [0.98,1.02], p = 0.05). CONCLUSIONS: Common pathophysiological mechanisms leading to TCD phenotypes in non-malarial illness are not causative in children with CM. Alternative mechanistic contributors, including mechanical factors of the cerebrovasculature and biologically active regulators of vascular tone should be explored

    Micro-pharmacokinetics: quantifying local drug concentration at live cell membranes

    Get PDF
    Fundamental equations for determining pharmacological parameters, such as the binding afnity of a ligand for its target receptor, assume a homogeneous distribution of ligand, with concentrations in the immediate vicinity of the receptor being the same as those in the bulk aqueous phase. It is, however, known that drugs are able to interact directly with the plasma membrane, potentially increasing local ligand concentrations around the receptor. We have previously reported an infuence of ligand-phospholipid interactions on ligand binding kinetics at the ÎČ2-adrenoceptor, which resulted in distinct “micro-pharmacokinetic” ligand profles. Here, we directly quantifed the local concentration of BODIPY630/650-PEG8-S-propranolol (BY-propranolol), a fuorescent derivative of the classical ÎČ-blocker propranolol, at various distances above membranes of single living cells using fuorescence correlation spectroscopy. We show for the frst time a signifcantly increased ligand concentration immediatel adjacent to the cell membrane compared to the bulk aqueous phase. We further show a clear role of both the cell membrane and the ÎČ2-adrenoceptor in determining high local BY-propranolol concentrations at the cell surface. These data suggest that the true binding afnity of BY-propranolol for the ÎČ2-adrenoceptor is likely far lower than previously reported and highlights the critical importance of understanding the “micro-pharmacokinetic” profles of ligands for membrane-associated proteins

    Analysis of Protein Palmitoylation Reveals a Pervasive Role in Plasmodium Development and Pathogenesis

    Get PDF
    Asexual stage Plasmodium falciparum replicates and undergoes a tightly regulated developmental process in human erythrocytes. One mechanism involved in the regulation of this process is posttranslational modification (PTM) of parasite proteins. Palmitoylation is a PTM in which cysteine residues undergo a reversible lipid modification, which can regulate target proteins in diverse ways. Using complementary palmitoyl protein purification approaches and quantitative mass spectrometry, we examined protein palmitoylation in asexual-stage P. falciparum parasites and identified over 400 palmitoylated proteins, including those involved in cytoadherence, drug resistance, signaling, development, and invasion. Consistent with the prevalence of palmitoylated proteins, palmitoylation is essential for P. falciparum asexual development and influences erythrocyte invasion by directly regulating the stability of components of the actin-myosin invasion motor. Furthermore, P. falciparum uses palmitoylation in diverse ways, stably modifying some proteins while dynamically palmitoylating others. Palmitoylation therefore plays a central role in regulating P. falciparum blood stage development
    • 

    corecore