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SUMMARY

Asexual stage Plasmodium falciparum replicates
and undergoes a tightly regulated developmental
process in human erythrocytes. One mechanism
involved in the regulation of this process is post-
translational modification (PTM) of parasite proteins.
Palmitoylation is a PTM in which cysteine residues
undergo a reversible lipid modification, which can
regulate target proteins in diverse ways. Using com-
plementary palmitoyl protein purification appro-
aches and quantitative mass spectrometry, we
examined protein palmitoylation in asexual-stage
P. falciparum parasites and identified over 400 palmi-
toylated proteins, including those involved in cytoad-
herence, drug resistance, signaling, development,
and invasion. Consistent with the prevalence of
palmitoylated proteins, palmitoylation is essential
for P. falciparum asexual development and influ-
ences erythrocyte invasion by directly regulating
the stability of components of the actin-myosin inva-
sion motor. Furthermore, P. falciparum uses palmi-
toylation in diverse ways, stably modifying some
proteins while dynamically palmitoylating others.
Palmitoylation therefore plays a central role in regu-
lating P. falciparum blood stage development.

INTRODUCTION

Plasmodium falciparum is responsible for almost all malaria-

induced mortality and is a major threat to global public health

(Murray et al., 2012; Snow et al., 2005). While it has a complex

life cycle, it only causes disease while undergoing development

and asexual multiplication within human erythrocytes—where it

alters its host cell to support nutrient uptake, reproduction, and

immune evasion (Miller et al., 2002). Asexual-stage development

is tightly regulated, and large-scale studies of transcription have

emphasized a key role for gene regulation in controlling this

process (Bozdech et al., 2003; Lasonder et al., 2002; Otto
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et al., 2010). Protein posttranslational modifications (PTM) are

also commonly used to regulate biological processes, and

should be fundamental to the coordination of P. falciparum

development. In recent years, the advent of specific purification

methods and highly sensitive mass spectrometry approaches

have allowed large-scale analyses of PTMs such as protein

phosphorylation, ubiquitination, and acetylation and have

provided valuable insight into protein regulation (Choudhary

et al., 2009; Rigbolt et al., 2011; Xu et al., 2010). These

approaches are only now being applied to P. falciparum, but,

as the recent publication of the P. falciparum phosphoproteome

illustrates, they will provide important insight that supports the

generation of diverse hypotheses probing key aspects of para-

site biology (Treeck et al., 2011).

Protein palmitoylation, the reversible addition of a 16-carbon

saturated fatty acid to cysteine residues, is a PTM that regulates

protein localization, activity, and membrane binding (Linder and

Deschenes, 2007; Resh, 2006a). For example, targeting of

H/Nras GTP-binding proteins to the plasma membrane, Golgi

network, or endoplasmic reticulum depends on its dynamic

palmitoylation/depalmitoylation (Rocks et al., 2005). For dynam-

ically palmitoylated proteins like these, the addition and removal

of palmitoyl groups can be rapid and tightly regulated, while for

other proteins, palmitoylation can be stable and exert a long-

term effect (Resh, 2006a). While there are a few loosely defined

palmitoylation motifs, such as a cysteine within three to four resi-

dues of an N-terminal myristoylation site, it is not generally

possible to identify palmitoylated proteins by their primary

sequence—a fact that has been reinforced by the development

of proteome-level approaches for palmitoyl protein identifica-

tion. These approaches have shown that palmitoylation is signif-

icantly more common than previously thought and affects a wide

range of protein classes and cellular functions (Emmer et al.,

2011; Kang et al., 2008; Martin and Cravatt, 2009; Roth et al.,

2006; Wilson et al., 2011; Yang et al., 2010; Yount et al., 2010).

Protein palmitoylation in P. falciparum is poorly characterized,

with only three experimentally confirmed palmitoyl proteins:

PfGAP45, PfCDPK1, and Pf_calpain (Möskes et al., 2004;

Rees-Channer et al., 2006; Russo et al., 2009). However, given

the widespread use of palmitoylation as a regulatory mechanism

in other eukaryotes, it is likely that P. falciparum uses palmitoyla-

tion extensively to regulate key aspects of its biology, including
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those central to pathogenesis. To determine the role of palmitoy-

lation in regulating P. falciparum asexual-stage biology, we have

characterized the palmitoylated portion of the schizont pro-

teome using two complementary techniques: acyl-biotin

exchange, andmetabolic labeling with a click chemistry compat-

ible palmitic acid analog (Martin and Cravatt, 2009; Wan et al.,

2007). In order to confidently distinguish palmitoylated proteins

from nonspecific background proteins, we used stable isotope

labeling with amino acids in cell culture (SILAC) to allow highly

accurate mass spectrometry-based protein quantification. The

comparative use of these two independent purification strate-

gies coupled with the use of SILAC to provide robust quantifica-

tion allows for a thorough validation of identified palmitoyl

proteins. Using these approaches, we have identified more

than 400 putative palmitoyl proteins, including proteins essential

for drug resistance, protein export, cytoadherence, schizont

development, and invasion. This data set provides an important

resource for the generation of hypotheses probing protein func-

tion and regulation in multiple areas of P. falciparum biology.

RESULTS

Palmitoylated P. falciparum Proteins Can Be Purified
with Both Acyl-Biotin Exchange and Metabolic
Labeling/Click Chemistry
Two fundamentally different strategies for the global purification

of palmitoyl proteins have been reported: acyl-biotin exchange

(ABE) andmetabolic labeling with a palmitic acid analog followed

by click chemistry (MLCC) (Martin and Cravatt, 2009; Roth et al.,

2006). ABE allows the exchange of thioester-linked palmitoyl

groups for a biotin moiety, which can then be used for specific

purification of previously palmitoylated proteins (Figure 1B).

For ABE, the total proteome is extracted, solubilized, and treated

with N-ethylmaleamide (NEM), which irreversibly blocks free

thiol groups on unmodified cysteines. Thioester bonds are then

cleaved by hydroxylamine treatment, releasing S-linked palmi-

toyl groups to expose previously bound thiols, which are then

covalently linked to HPDP-biotin. As a control for specificity,

an equal quantity of the total proteome is subjected to ABE,

but is not treated with hydroxylamine so palmitoyl moieties are

not removed and palmitoylated proteins are not subsequently

purified (see the Supplemental Experimental Procedures for

a detailed description of the protocol).

MLCC is an orthogonal method of palmitome purification that

relies on metabolic-labeling of cells with 17-octadecynoic acid,

a palmitic acid analog with an alkyne group at the carbon-16

position. After 17-ODYA labeling, proteins are extracted and all

analog-labeled proteins are irreversibly biotinylated using

biotin-azide and copper (I)-catalyzed azide-alkyne cycloaddition

(click chemistry), allowing these proteins to be purified on strep-

tavidin-agarose (Figure 1D). MLCC has been used to charac-

terize the palmitome from mammalian cell lines (Martin and

Cravatt, 2009; Wilson et al., 2011; Yount et al., 2010), but has

not previously been used in conjunction with ABE. It is important

to note that while each of these methods allow robust palmitoyl

protein purification, they will not isolate a completely overlapping

set of proteins. For example, while ABE has the potential to

capture the full palmitome, MLCC will only capture proteins

that become palmitoylated during the metabolic labeling time
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course, and is therefore restricted to a more dynamic portion

of the palmitome.

In order to show that each of these methods reproducibly

purify palmitoyl proteins from P. falciparum, we probed palmi-

tome eluates with antibodies specific to glideosome-associated

protein 45 (PfGAP45), which is known to be palmitoylated.

PfGAP45 was purified both by ABE and by MLCC, but was not

detectable in control reactions for either method (Figures 1A

and 1C). Importantly, treating 17-ODYA-labeled samples with

hydroxylamine prevented purification of PfGAP45 byMLCC (Fig-

ure S1A available online). This establishes that PfGAP45 MLCC

purification is dependent on the formation of a thioester bond,

and provides direct evidence that 17-ODYA is used as a palmitic

acid analog.

Large-Scale Purification of P. falciparum Palmitoylated
Proteins
We performed large-scale ABE and MLCC from P. falciparum

schizont stage parasites, with three biological replicates purified

with ABE and two with MLCC. A small aliquot of the eluates from

each replicate was assayed for PfGAP45 enrichment before

mass spectrometry analysis, and PfGAP45 was clearly enriched

in all palmitome fractions but was not detectable in any control

fraction (Figure S2). All samples were SILAC labeled during

in vitro culture to allow for quantitative assessment of palmitoyl

protein enrichment in palmitome versus control elutions (Figures

1B, 1D, 2A, and 2C). High-resolution tandemmass spectrometry

analysis of pooled (heavy and light SILAC-labeled), gel-sepa-

rated palmitome, and control elutions was performed and

MaxQuant (Cox and Mann, 2008) was used to generate specific

ratios of enrichment (palmitome over control), which were used

to classify putative palmitoyl proteins and to test the reproduc-

ibility of each method (Figure S2). All proteins given an enrich-

ment ratio by MaxQuant were subsequently grouped into

background, enriched, or highly enriched classes based both

on their magnitude of enrichment and on the robustness of their

ratio assignments (Tables S1 and S2; see the Supplemental

Information for a complete description of the cutoff criteria).

In total, 1,752 proteins were identified from late asexual-stage

P. falciparum at a false discovery rate of 1%. With both ABE and

MLCC, we observed a wide range of enrichment values across

the proteome (Figures 2A and 2C). Critically, with each method

a large number of proteins were not significantly enriched, high-

lighting the importance of robust quantitative analysis to allow for

distinction between enriched palmitoyl proteins and nonspecific

proteins (Figures 2A and 2C). With each palmitoyl protein purifi-

cation method we also observed a wide dynamic range of

protein intensity values, indicating excellent depth of proteome

coverage, though ABE clearly produced the more complex

sample (Figure 2A). The greater complexity of the ABE output

is also reflected in the larger number of significantly enriched

proteins identified by this method (Figure 3A).

Importantly, each method displayed strong enrichment of

known palmitoyl proteins (PfGAP45 and Pf_calpain; Figures 2B

and 2D). Proteins known to be palmitoylated in other systems

(Bet3 transporter, phospholipid scramblase 1, SNAREs, for

example; Figures 2A and 2C) were also identified as enriched,

providing further validation of each purification method and

for our assignment of enrichment classes. To give a visual
t & Microbe 12, 246–258, August 16, 2012 ª2012 Elsevier Inc. 247



Figure 1. ABE and MLCC Allow Purification

of a Known P. falciparum Palmitoyl Protein

(A) An overview of the ABE-based strategy for

mass spectrometry-based identification of palmi-

toyl proteins, as described in the main text. For

SILAC labeling, parasites used to generate the

mock hydroxylamine-treated control samples

were gown in ‘‘light’’ amino acid-containing media,

while parasites used for hydroxylamine treated

samples were grown with a ‘‘heavy’’ amino acid.

(B) An overview of the MLCC-based strategy for

mass spectrometry-based identification of palmi-

toyl proteins, as described in the main text. For

SILAC labeling, control parasites were grown in

‘‘light’’ amino acid-containing media, while 17-

ODYA-labled parasites were grown with a ‘‘heavy’’

amino acid.

(C) Anti-PfGAP45 antibodies were used to detect

the presence of GAP45 in an ABE +hydroxylamine

(palmitome; right lane) elution, and a mock

hydroxylamine (control; left lane) elution.

(D) Anti-PfGAP45 antibodies were used to detect

the presence of GAP45 in a total 17-ODYA-labeled

proteome (Total Lysate), and in a sample where

click chemistry had been used to biotinylate and

purify all 17-ODYA-labeled protein (palmitome; +

17-ODYA). Left-hand lanes show PfGAP45

present in total DMSO proteome (Total Lysate)

and after a control click chemistry reaction

(control; +DMSO).

See also Figure S1.
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representation of relative enrichment levels, palmitome and

control eluates from each method were probed with antibodies

against PfMTIP and PfCRT—proteins that have been highly

studied but that have not previously been identified as palmitoy-

lated. Immunoblot data clearly validates assignment of these

proteins as palmitoyl proteins (Figures 2B and 2D).
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ABE- and Click Chemistry-Based
Palmitome Purification Methods
Are Complementary
The palmitome purification strategies out-

lined above are robust and well validated;

however, it is important to note that each

method will result in the isolation of

unique classes of false positives. ABE,

since it relies on complete NEM-blockage

of all free thiols, can result in the enrich-

ment of highly abundant proteins where

thiol blockage may not proceed to

completion. ABE also reproducibly

purifies enzymes that use thioester-linked

acyl intermediates in their reaction mech-

anism (ubiquitin ligases, for example

[Yang et al., 2010]). MLCC results in the

enrichment of non-palmitoyl proteins

that have incorporated 17-ODYA but

that are not S-acylated. P. falciparum

GPI-anchors, for example, have a palmi-

toyl-linked inositol ring (Naik et al.,

2000), resulting in the reproducible purifi-
cation of GPI-linked proteins after MLCC. Since these methods

have unique classes of false positives, we have analyzed all

resulting data in two ways: first, we have created enriched and

highly enriched classes for each individual method, and second

we have taken advantage of the complementary nature of the

two approaches to create a group of putative palmitoyl proteins



Figure 2. Large-Scale Identification of

P. falciparum Palmitoyl Proteins

(A) SILAC-based quantitative mass spectrometry

of ABE-purified proteins, based on three biological

replicates. Plots display median protein intensities

(y axis) and MaxQuant-generated enrichment

ratios (x axis) for all ABE-identified proteins.

Proteins meeting criteria for designation as en-

riched (blue) or highly enriched (red) are noted.

Proteins of particular interest are also identified by

name.

(B) Anti-PfMTIP antibodies were used to detect

PfMTIP in ABE eluates to validate its identifica-

tion by mass spectrometry. Immunoblots from

a +hydroxylamine (palmitome; right lane) eluate

and –hydroxylamine (control; left lane) eluate

were probed with anti-PfMTIP immune sera.

(C) SILAC-based quantitative mass spectrometry

of P. falciparum proteins purified by MLCC,

based on two biological replicates. Plots display

median protein intensities (y axis) and Max-

Quant-generated enrichment ratios (x axis) for all

MLCC-identified proteins. Proteins meeting

criteria for designation as enriched (blue) or

highly enriched (red) are noted. Proteins of

particular interest are also identified by name.

(D) Anti-PfCRT antibodies were used to detect

PfCRT in MLCC eluates to validate its identifi-

cation by mass spectrometry. Immunoblots from

a (+)17-ODYA (palmitome; right lane) eluate and

(+)DMSO (control; left lane) eluate were probed

with anti-PfCRT immune sera.

See also Figure S2 and Tables S1 and S2.
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identified as enriched by both methods. For this group of over-

lapping identifications, we relaxed protein abundance cutoffs

to avoid eliminating lower abundance proteins that might not

be seen in all five replicates across the two purification strategies

(see the Supplemental Experimental Procedures for full enrich-

ment cutoff details).

ABE resulted in the identification of 111 highly enriched

proteins and a further 242 proteins classified as enriched (Fig-

ure 3A and Table S1). MLCC resulted in the identification of 82

highly enriched proteins and 94 enriched proteins (Figure 3A

and Table S2), which again reflects the lower complexity of the

MLCC samples. Using the combined approach, 202 proteins

were enriched by both methods (Figure 3A and Table S3). Strik-

ingly, 57.2% of the total enriched fraction identified by MLCC is

enriched by ABE. This level of coenrichment is significantly

higher than the highest previously seen when separate palmi-

tome reports using only one or the other method are compared

(35% [Wilson et al., 2011]).

The P. falciparum Palmitome
After analysis of all enrichment data, it is apparent that ABE and

MLCC isolate both overlapping and unique portions of the

P. falciparum palmitome (Tables S1, S2, and S3), as has been

reported when comparing phosphoproteome purification tech-

niques (Bodenmiller et al., 2007). With each method, we have

not observed a striking bias in enrichment of Gene Ontology

(GO) terms or specific protein classes that would predictably
Cell Hos
explain variations in these data sets, although, again, some

differences are likely due to MLCC only capturing proteins that

have incorporated 17-ODYA during the labeling time course.

We have subsequently compiled all proteins classified as en-

riched by any of our cutoff criteria into one list of 494 putative

P. falciparum palmitoyl proteins (Figure 3A and Table S4). While

this set of 494 proteins may contain false positives, we consider

this the closest approximation of the total palmitome from

P. falciparum schizonts. However, as a final layer of validation,

we performed statistical analysis of both ABE and MLCC data

sets together and 409 of the 494 proteins designated as enriched

by our criteria were confirmed as significant by this analysis

(using a 5% false discovery rate and t test with Benjamini and

Hochberg correction for multiple hypothesis testing; Table S4).

Some of the proteins that did not reach significance did not

have at least three replicate ratios across the five ABE and

MLCC experiments, whichwas required for this analysis (for total

enrichment data used to determine cutoffs and compile the

P. falciparum palmitome, see Table S5).

GO analysis of the total P. falciparum palmitome reveals

enrichment of proteins involved in transport, establishment of

localization, and in stimulus response, which is consistent with

palmitome GO analyses in other systems (Figure 3B) (Wilson

et al., 2011). A selected set of 55 proteins enriched by both

ABE and MLCC are presented in Table 1, and this list includes

scaffolding, cytoskeletal, adhesion, metabolism-related, chap-

erone, signaling, and transport proteins, all of which are protein
t & Microbe 12, 246–258, August 16, 2012 ª2012 Elsevier Inc. 249



Figure 3. The P. falciparum Palmitome

(A) Total palmitoyl protein identifications resulting from this work broken down by purification method and with corresponding percentages of annotated, TM

domain-containing, and exported proteins.

(B) Gene Ontology analysis of total enriched proteins. GO analysis is of ‘‘biological process’’ annotations and is presented in comparison to corresponding

percent genome values. p values are % 0.05 for all displayed terms.

(C) Selected P. falciparum palmitoyl proteins important for schizont development and invasion, protein export, and intraparasitic processes.

See also Figure S3 and Tables S3, S4, and S5.
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classes identified as palmitoylated in other organisms. While GO

analysis implies a significant conservation of Plasmodium palmi-

toyl protein function, it is also apparent that many P. falciparum

palmitoyl proteins are involved in essential parasite-specific

processes (Figure 3C). Examples include proteins involved

in drug resistance (PfCRT, PfMDR1), schizont development

(ALV4, ALV5), erythrocyte invasion (PfMTIP, PfGAPM3,

PfROM4), and protein export (PfMESA, PfRESA).

Protein Palmitoylation Is Essential for Schizont
Development and Is Directly Involved in Regulating
Erythrocyte Invasion
The P. falciparum palmitome includes a significant number of

proteins important for schizont maturation and invasion,

implying a role for palmitoylation in these processes (Figure 3C).

To gain insight into the regulatory role of palmitoylation in these

processes, we have used 2-bromopalmitate (2-BMP), an inhib-

itor of palmitoylation (Resh, 2006b), to disrupt palmitoylation in

P. falciparum. First, we treated late trophozoite/early schizont-

stage parasites with 100 mM 2-BMP (a 2-BMP concentration
250 Cell Host & Microbe 12, 246–258, August 16, 2012 ª2012 Elsevi
typically used to functionally inhibit palmitoylation in other

systems [Resh, 2006b]) and examined their ultrastructure

approximately 24 hr after treatment (Figures 4A and 4B).

DMSO-treated control parasites developed normally, with near

fully formed merozoites visible within late segmented schizonts

(Figure 4A). 2-BMP treated parasites, however, developed

abnormally, with severe disruption of intracellular membranes

(Figure 4B). Strikingly, 2-BMP, in addition to generally disrupting

cellular membranes, caused a gross mislocalization of rhoptries

(Figure 4B). In DMSO treated parasites, single rhoptry structures

are located within single developing merozoites, while in 2-BMP-

treated parasites rhoptries have formed but are in aggregates or

are not enclosed within a specific parasite structure (Figures 4A

and 4B).

This phenotype indicated a possible role for palmitoylation in

completing asexual-stage development. We therefore treated

late schizonts with increasing concentrations of 2-BMP and

observed that erythrocyte invasion is significantly inhibited by

low 2-BMP doses (Figure 4C). To rule out an indirect effect

through an impact on host erythrocytes, we repeated these
er Inc.
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assays using a two-color flow cytometry-based approach that

allows separate treatment of late schizonts or target erythro-

cytes (Theron et al., 2010). Treatment of parasites with 2-BMP

again resulted in a decrease in invasion, albeit with a lower

degree of sensitivity, presumably because parasites were

treated for only 4 hr before being thoroughly washed and mixed

with erythrocytes. By contrast, treatment of erythrocytes with

2-BMP and mixing them with mock-treated parasites had no

impact on invasion, demonstrating that the effect of 2-BMP is

parasite specific (Figure 4D).

Protein Palmitoylation Directly Regulates the Stability
of Invasion Motor Components PfGAP45 and PfMTIP
Since palmitoylation is apparently essential for invasion, and

because several invasionmotor complex components are palmi-

toyl proteins, we next treated schizonts (approximately 42–44 hr

after invasion) with 50 mM 2-BMP for 2–4 hr and examined its

effect on specific complex members (Baum et al., 2006; Jones

et al., 2006). Western blotting of 2-BMP-treated schizont mate-

rial showed that levels of PfGAP45 and PfMTIP are severely

reduced compared to DMSO-treated controls (Figure 5A). By

contrast, complex components GAP50 and MyoA are unaf-

fected. Treatment of parasites with a combination of 2-BMP

and the proteasome inhibitor, MG-132, rescued a significant

amount of PfGAP45, and, to a lesser extent, PfMTIP (Figure 5A).

These results imply a direct relationship between palmitoylation

of PfGAP45 and PfMTIP and protein stability, with each being

degraded by the proteasome if palmitoylation is inhibited. Not

surprisingly, the localization of the PfGAP45 remaining after

2-BMP treatment is disrupted, becoming more diffuse and

losing any apparent IMC association (Figure 5B).

To more directly test the function of PfGAP45 palmitoylation,

we generated P. falciparum lines expressing triple HA-tagged

PfGAP45 (GAP45-HA) or PfGAP45 with its putative N-terminal

palmitoylation site mutated to alanine (GAP45-Npal-HA) (Fig-

ure S3). These lines were made using the 3D7attB line (Nkrumah

et al., 2006), and expression of GAP45-HA and GAP45-Npal-HA

was in addition to that from the PfGAP45 locus. Examination of

GAP45-HA and GAP45-Npal-HA clearly shows a decrease in

GAP45 expression after mutation of the N-terminal palmitoyla-

tion site (Figure 5C). This result replicates the effect of 2-BMP

on endogenous PfGAP45 (Figure 5A) and provides additional

evidence that 2-BMP specifically inhibits palmitoylation, though

pleiotropic effects cannot be excluded.

In contrast to the effect of 2-BMP on PfGAP45 localization, the

localization of the remaining GAP45-Npal-HA was unaffected,

with the protein remaining at the IMC of developing merozoites,

colocalized with endogenous PfGAP45 (Figure 5D). This is

consistent with recently published results showing localization

of Toxoplasma gondii GAP45 to the IMC after mutation of its

N-terminal acylation motif. It was further shown that TgGAP45

acts as a link between the IMC and PM of tachyzoites, and

that this linking function depends on conserved cysteine resi-

dues in its C-terminal domain that were hypothesized to be pal-

mitoylated, though this was not confirmed (Frénal et al., 2010).

While the palmitome purification methods used here are aimed

at identifying palmitoylated proteins rather than specific modi-

fied cysteines, ABE can be used for this purpose. This is because

cysteine residues that are not palmitoylated will be irreversibly
Cell Hos
bound by NEM before ABE, and are therefore not modified

during sample processing. By contrast, palmitoylated cysteines

are left with exposed thiol groups after ABE, and will be alkylated

during sample processing by iodoacetamide treatment prior to

gel electrophoresis. By examining PfGAP45 peptide spectra

individually, we identified a specific cysteine (cys160) in the

PfGAP45 C terminus that was not modified by NEM, but that

had been carbamidomethylated by iodoacetamide (Figure 5E).

This is direct evidence that GAP45 is palmitoylated at its C

terminus and further validates the proposed PM-IMC linking

function of GAP45 in Toxoplasma and Plasmodium. Further

examination of peptide fragmentation spectra produced during

the course of this work has allowed the identification of several

other palmitoylation sites (PfCRT, at cys301, for example; Fig-

ure S4) but the large-scale analysis of specific palmitoylation

sites will require extensive modification of the ABE protocol.

The Dynamic Palmitome: 2-BMP Affects Palmitoylation
on a Range of Proteins
The destabilizing effect of 2-BMP on PfGAP45 and PfMTIP pro-

vides an explanation for its invasion-inhibitory effect; however,

it is likely that 2-BMP also affects other palmitoyl proteins

essential for invasion. To determine the range of proteins

affected by 2-BMP treatment, and to provide a more complete

explanation for its effect on schizont development and invasion,

we used ABE to purify the palmitome from well-synchronized

parasites treated for 6 hr with 50 mM2-BMPor DMSO. To directly

compare palmitoyl protein levels in 2-BMP versus DMSO

samples, we used chemical isotope labeling to add an ‘‘interme-

diate’’ (DMSO) or ‘‘heavy’’ (2-BMP) isotope tag to peptides

derived from the palmitome (+hydroxylamine) elutions of either

sample (a ‘‘light’’ tag was used to label –hydroxylamine elutions

and peptides were pooled prior toMS/MS analysis). Comparison

of intermediate and heavy derived protein quantities then

allowed the creation of 2-BMP/DMSO ratios describing the

loss of specific palmitoyl proteins after 2-BMP treatment, with

a ratio significantly less than 1 indicating protein loss (Figure 6B,

Tables S6 and S7, and Figure S5A).

The 2-BMP/DMSO ratio of palmitoyl proteins purified after

DMSO treatment indicate that 2-BMP has a significant impact

on a number of palmitoyl proteins (Figure 6B and Table S6). It

is important to note that the impact of 2-BMP treatment could

have extended to a broader range of palmitoyl proteins with an

increased 2-BMP exposure time; however, the short exposure

time used here allows some insight into the range of palmitoyla-

tion-dependent regulatory mechanisms active in asexual-stage

parasites. First, there are several proteins (PfBet3, PfCRT,

PfCDPK1) that are unaffected by 2-BMP treatment. This could

be an indication that these proteins are stably palmitoylated—

that they were translated and palmitoylated prior to 2-BMP addi-

tion, and that once palmitoylated they were not depalmitoylated

(Figure 6A). Second, there are several proteins that are reduced

to an intermediate level after 2-BMP treatment (for example,

PfGAPM3, PfEMP2, and PfROM4, with 2-BMP/DMSO ratios

between 0.35 and 0.7). This intermediate level of palmitoyl

protein loss could indicate an effect primarily on protein trans-

lated after drug addition, where protein translated before

addition of 2-BMP is palmitoylated and protein translated after

its addition is not. To illustrate, 2-BMP was added at
t & Microbe 12, 246–258, August 16, 2012 ª2012 Elsevier Inc. 251



Table 1. P. falciparum Palmitoyl Proteins Identified by Both ABE and MLCC

Gene ID Protein Description Mean ABE Ratio Mean CC Ratio

TM Domain Proteins

PF14_0541 V-type H(+)-translocating pyrophosphatase, putative 3.60 2.43

PFB0210c hexose transporter, PfHT1 4.08 2.58

PF11_0172 folate/biopterin transporter, putative 3.32 3.51

PF14_0679 inorganic anion exchanger, inorganic anion antiporter 5.96 3.77

PFI0720w transporter, putative 3.79 3.09

MAL7P1.27 chloroquine resistance transporter 13.54 6.65

PFE0785c metabolite/drug transporter, putative 6.12 3.55

PFL1125w phospholipid-transporting ATPase, putative 6.39 2.11

PF13_0252 nucleoside transporter 1 5.58 3.36

MAL13P1.231 Sec61 alpha subunit, PfSec61 3.28 3.31

PFE1130w conserved protein, unknown function 5.80 3.35

PFF1375c ethanolaminephosphotransferase, putative 3.16 3.32

PF14_0528 hemolysin, putative 3.99 3.38

PF14_0607 conserved Plasmodium membrane protein, unknown function 5.55 6.03

MAL13P1.329 conserved Plasmodium membrane protein, unknown function 3.88 2.26

PF11_0338 aquaglyceroporin 3.83 2.42

PF14_0065 conserved Plasmodium membrane protein, unknown function 9.93 7.77

PFC0725c formate-nitrate transporter, putative 4.06 2.74

PFE0340c rhomboid protease ROM4 8.92 5.01

MAL13P1.298 conserved Plasmodium membrane protein, unknown function 3.34 8.77

PF10_0366 ADP/ATP transporter on adenylate translocase 3.95 2.37

PF13_0272 thioredoxin-related protein, putative 3.79 3.11

PF14_0493 sortilin, putative 3.57 2.07

MAL13P1.56 m1 family aminopeptidase 3.09 2.61

PF11_0052 Qa-SNARE protein, putative 9.71 7.47

PF11_0055 conserved protein, unknown function 3.09 3.57

PF14_0567 conserved Plasmodium protein, unknown function 3.32 2.14

PFE1590w early transcribed membrane protein 5, ETRAMP5 3.09 2.54

PFF1415c DNAJ domain protein, putative 4.01 4.42

PFL1415w conserved Plasmodium protein, unknown function 8.46 3.90

Dual Acylation Motif or Cysteine Near the N or C terminus

PF10_0039 membrane skeletal protein IMC1-related 4.27 9.57

PF10_0107 conserved protein, unknown function 16.78 8.46

PF11_0211 conserved Plasmodium protein, unknown function 8.06 4.36

PF11_0415 conserved Plasmodium protein, unknown function 3.64 10.77

PF14_0578 conserved Plasmodium protein, unknown function 9.41 9.97

PF14_0586 conserved Plasmodium protein, unknown function 7.08 6.61

PFB0815w calcium-dependent protein kinase 1 4.71 2.53

PFE0660c purine nucleotide phosphorylase, putative 4.30 2.74

PFE1285w membrane skeletal protein IMC1 related 5.63 8.91

PFF0380w conserved Plasmodium protein, unknown function 7.92 4.38

PFL1090w glideosome-associated protein 45 9.74 11.53

PFL2225w myosin A tail domain-interacting protein 4.01 8.26

Atypical

PF07_0127 conserved Plasmodium protein, unknown function 9.86 5.01

PF08_0035 conserved Plasmodium protein, unknown function 4.11 5.23

PF10_0126 conserved Plasmodium protein, unknown function 9.14 4.98

PF10_0220 phospholipid scramblase 1, putative 10.65 12.64
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Table 1. Continued

Gene ID Protein Description Mean ABE Ratio Mean CC Ratio

PF11_0164 peptidyl-prolyl cis-trans isomerase 3.87 2.92

PF13_0322 falcilysin 3.42 2.26

PFC0120w cytoadherence-linked asexual protein 3.1 3.23 2.65

PFC0170c dihydrolipoamide acyltransferase, putative 3.65 2.38

PFC0745c proteasome component C8, putative 4.47 2.69

PFE0040c mature parasite-infected erythrocyte surface antigen

(MESA) or PfEMP2

8.43 7.26

PFF0675c myosin E 6.01 3.30

PFI0175w-a conserved Plasmodium protein, unknown function 5.25 4.77

PFI0265c RhopH3 4.35 2.65

A selected set of 55 proteins are listed and divided into groups that represent common palmitoyl protein types or that do not represent a common

palmitoyl protein class.
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approximately 38–42 hr after invasion, and it follows that the

majority of palmitoyl proteins affected by 2-BMP would be maxi-

mally expressed at or after this time point in asexual-stage devel-

opment. This hypothesis is supported by the expression data

available for the DMSO and 2-BMP treated palmitomes, with

the peak expression time for palmitoyl proteins affected by

2-BMP being skewed toward a later time point (Figure S5B).

Lastly, the quantities of several proteins were severely reduced

after 2-BMP treatment (2-BMP/DMSO ratios of 0.3 to 0.1). These

include PfMTIP and PfGAP45, as well as several proteins that

were not previously known to be palmitoylated. As we have

shown with PfGAP45 and PfMTIP, the near complete loss of

these proteins could be due to their destabilization, or it could

be due to an inhibition of palmitoyl cycling (Figure 5A).

DISCUSSION

We have characterized the P. falciparum schizont-stage palmi-

tome using two complementary palmitoyl protein purification

techniques coupled with quantitative mass spectrometry. This

has allowed the identification ofmore than 400 putative palmitoyl

proteins in P. falciparum, many of which play central roles in

asexual-stage development and virulence. This work provides

valuable insight into the range of palmitoylation-regulated

processes active in asexual-stage P. falciparum, but also raises

a series of questions, relating first to the quality and depth of the

palmitome as we have described it, second to the parasite’s

means of palmitoylating the targets identified here, and lastly

to the functional role played by palmitoylation in regulating these

proteins.

Regarding the quality of the palmitome we have described, it

must be noted that both ABE andMLCCwill generate false posi-

tives for a range of reasons, as discussed above (Kang et al.,

2008; Roth et al., 2006; Yang et al., 2010). However, by perform-

ing all experiments using SILAC we have been able to compre-

hensively define the P. falciparum palmitome based on quantita-

tive enrichment data. This significantly increases the value of the

data as a resource because the total enrichment data used for

analysis is presented here and can be independently analyzed

before beginning experimental follow-up on a particular protein

(Table S5). It is also important to note that our cutoffs and group-

ings of enriched and highly enriched proteins have been
Cell Hos
completely unbiased regarding an expectation of palmitoylation.

This is because any effort to eliminate proteins not expected to

be palmitoylated would raise the likelihood that true positives

are eliminated. For example, both ABE and MLCC identify

several ribosomal proteins and histones, and while one might

consider these false positives due to their abundance, it has

recently been established in other systems that these proteins

can be palmitoylated (Wilson et al., 2011; Yang et al., 2010).

While setting cutoff criteria is fundamentally arbitrary, it is

possible to assess whether our criteria have created false nega-

tives as a result of being too stringent. While no consensus site

for palmitoylation has been defined, there is an easily identifiable

consensus site for N-myristoylation, N-MGXXXS/T (Resh, 1999),

and sinceN-myristoylation is often coupled to palmitoylation, it is

possible to compare the number of predicted N-myristoyl-palmi-

toyl proteins present in the P. falciparum genome with the

number that we have experimentally identified. This will also

provide an indication of the depth of palmitome coverage.

P. falciparum has 51 predicted N-myristoylated proteins (based

on a search of soluble proteins for the above motif), 13 of which

have a cysteine residue within 10 amino acids of the N-myristoy-

lation motif, which is indicative of dual acylation. Ten of these 13

predicted dually acylated proteins are identified here, and eight

are defined as palmitoyl proteins using our cutoff criteria (Fig-

ure S3). Of the three that are not identified, one is predominantly

expressed in gametocytes, one is expressed at low levels in

blood stages, and one is small and predicted to produce only

one peptide identifiable by mass spectrometry after trypsin

digestion. Having confirmed as palmitoylated eight out of ten

predicted dually acylated proteins that are likely to be detectable

suggests that we have identified the majority of palmitoyl

proteins in P. falciparum schizonts.

Despite the depth of palmitome coverage reported here, pal-

mitoyl proteins have likely been missed; however, this data set

can be a useful guide for their identification. For example, we

have identified the IMC components PfGAPM2 and PfGAPM3

as palmitoyl proteins but not the related protein PfGAPM1.

PfGAPM1, like PfGAPM2 and PfGAPM3, does however have

conserved cysteine residues within and adjacent to its TM

domains (which are frequent sites of palmitoylation), making it

a likely palmitoyl protein that we have either failed to detect or

that is not palmitoylated at the time point we have sampled.
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Figure 4. Palmitoylation Is Essential for Schizont Development and

Invasion

(A) Electronmicrograph of mature schizonts (45–48 hr after invasion) after 24 hr

treatment with DMSO.

(B) Electronmicrograph ofmature schizonts (45–48 hr after invasion) after 24 hr

treatment with 100 mM 2-BMP.

(C) 2-BMP treatment inhibits erythrocyte invasion at low concentrations.

Erythrocyte invasion efficiency was measured after treatment with increasing

concentrations of 2-BMP. The histogram reports results from three biological

replicates, and error bars indicate the SEM. p values were calculated with

a student’s t test.

(D) 2-BMP inhibits erythrocyte invasion by affecting P. falciparum-specific

processes. Invasion efficiency was measured after mixing of 2-BMP-treated

schizonts with DMSO-treated erythrocytes (white bars) or 2-BMP-treated

erythrocytes with DMSO-treated schizonts (gray bars). The histogram reports

the results of three biological replicates, and error bars indicate the SEM.

p values were calculated with a student’s t test.
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This data set confirms the widespread use of palmitoylation by

P. falciparum, but how does the parasite regulate this modifica-

tion? The distinguishing feature of palmitoylation in comparison

with other acyl modifications is its reversibility, which is central

to its role in protein regulation. The dynamic use of palmitoylation

requires the ability to tightly control the addition and removal of

palmitoyl groups, and the enzymology of palmitoylation is an

active area of investigation. Work performed largely in model

organisms or eukaryotic cell culture has identified two families

of palmitoyl acyltransferases (PATs): the DHHC domain protein

family that catalyze the palmitoylation of intracellular proteins,

and the membrane-bound O-acyltransferase (MBOAT) protein

family that catalyze the palmitoylation of secreted proteins. Addi-

tionally, two types of palmitoyl-thioesterase are responsible for

protein depalmitoylation, the palmitoyl protein thioesterases

(PPT1 and PPT2) and the acyl protein thioesterases (APT1 and

APT2) (Resh, 2006a).

DHHC PATs are encoded in all eukaryotic genomes

sequenced to date, with seven in the S. cerevisiae genome

and 25 in the human genome (Mitchell et al., 2006). There are

12 DHHC-domain containing proteins encoded in the

P. falciparum genome, and the expression profiles of these

genes indicate expression ofmultiplemembers at each life-cycle

stage. One P. falciparum DHHC-protein has been characterized,

PFC0160w, and it is targeted to the Golgi (Seydel et al., 2005). As

palmitoylation of a given protein depends on it having access to

a DHHC-PAT, the localization of DHHC proteins may impart

a basic level of palmitoyl protein regulation. The P. falciparum

genome encodes one MBOAT family homolog, which is ex-

pressed throughout the life cycle. Previous work suggests this

protein is essential (Palacpac et al., 2004), and given that we

have identified several exported palmitoyl proteins, it will be

important to determine whether this protein is responsible for

palmitoylating the secreted proteins identified here. Lastly,

PPT and APT family palmitoyl-thioesterases are not well charac-

terized and their overall sequence conservation is low; however,

specific structural domains are known to be functionally impor-

tant, and P. falciparum encodes several proteins with the neces-

sary alpha/beta hydrolase fold, though the precise number of

P. falciparum PPT or APT homologs is unclear (Cantu et al.,

2010).

The P. falciparum genome clearly encodes the enzymes

necessary for the tight control of palmitoylation, but how might

this PTM be used to regulate specific P. falciparum proteins?

In the case of TM domain proteins, palmitoylation might be

used to regulate within-membrane localization or protein

stability. For example, the trafficking, within-membrane localiza-

tion, membrane retention, and gating of many multipass

membrane channels is influenced by palmitoylation (Shipston,

2011), andwehave identified awide range of palmitoylatedP. fal-

ciparum membrane channels here (PfCRT, for example), which

could be regulated in a similar manner. Palmitoylation can also

affect single-pass TM proteins, such as the yeast SNARE,

Tlg1, which is degraded by the proteasome if it is not palmitoy-

lated (Valdez-Taubas and Pelham, 2005). Furthermore, the

majority of raft-associated TM proteins are palmitoylated, with

this being important for their within-membrane sorting (Levental

et al., 2010), and palmitoylation of single-pass TM proteins may

play a similar role in P. falciparum.
er Inc.



Figure 5. Palmitoylation Directly Affects Specific Invasion Motor Complex Components, and the PfGAP45 C-Terminal Domain Is

Palmitoylated

(A) Effect of 2-BMP on invasion motor protein levels. Saponin lysates from P. falciparum treated with 50 mM 2-BMP, cotreated with 50 mM 2-BMP and

20 mM of proteasome inhibitor MG-132, or treated with DMSO were probed with antibodies to PfGAP45, PfGAP50, PfMTIP, PfMyoA, or PfERD2 as a loading
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Figure 6. Palmitome Purification after 2-BMP Treatment Reveals

Effects on P. falciparum Palmitoyl Proteins

(A) A model illustrating 2-BMP’s potential effect on dynamically palmitoylated

proteins. Proteins stably palmitoylated before 2-BMP addition will not be

affected, while proteins subject to acyl cycling will be underrepresented due to

inhibition of repalmitoylation.

(B) A selected range of proteins identified by ABE from DMSO-treated

P. falciparum schizonts are listed, with the effect of 2-BMP treatment deter-

mined by calculation of the abundance of these same proteins after ABE from

2-BMP-treated parasites and expressed as a ratio of 2-BMP/DMSO. Ratios

less than 1 indicate protein loss after 2-BMP treatment. Full data sets from

DMSO and 2-BMP treated parasites are in Tables S6 and S7.

See also Figure S5 and Tables S6 and S7.
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With soluble palmitoyl proteins, palmitoylation likely regulates

membrane binding and associated processes. More than 50%

of the palmitoyl protiens we have identified are soluble. These

include structural (alveolins), signaling (kinases and phospha-

tases), metabolic (glycolytic enzymes), chaperone (HSPs), and

hypothetical proteins, providing insight into the diversity of pal-

mitoylation-regulated processes in P. falciparum. Regulation of

these palmitoylation targets could involve cyclic acylation, like

H/NRas (Rocks et al., 2005), or they could be targets of ‘‘palmi-

toyl switches,’’ with a palmitoyl moiety being added or revealed
control. Changes in protein level were quantified by densitometry and are pres

extracts.

(B) Effect of 2-BMP on PfGAP45 localization. Late schizonts (44–48 hr after inv

membrane complex (IMC) was assessed with anti-PfGAP45 antibodies in immun

bars represent 1 mM.

(C) Mutation of the PfGAP45 N-terminal palmitoylation site (cys5) affects PfGAP4

(PfGAP45-HA) or mutant (PfGAP45-Npal-HA) protein were probed with an ant

Quantification of PfGAP45-Npal-HA loss is presented as a percentage of PfGAP

(D) Mutation of the PfGAP45 N-terminal palmitoylation site does not prevent IMC

of tagged and endogenous GAP45 by immunofluorescence in late schizont s

represent 1 mM.

(E) PfGAP45 is palmitoylated at cysteine 160. MS/MS fragmentation spectrum

Alignment of the PfGAP45 C terminus with its Apicomplexan homologs show tha

See also Figure S4.
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after phosphorylation or ligand biding (Salaun et al., 2010). The

identification of a second palmitoylation site in PfGAP45 is, in

this instance, interesting because it is adjacent to two phosphor-

ylation sites (Ser156 and Thr158 [Treeck et al., 2011]), providing

indirect support for a hypothesized relationship between these

two PTMs (Jones et al., 2009).

In summary, we have used a multitiered approach to identify

a significant portion of the P. falciparum palmitome and have

shown that palmitoylation may play a role in multiple parasite-

specific processes of great biological interest. This data should

provide a valuable resource for the field and allow specific

hypotheses to be generated for individual proteins of interest,

particularly for those with no known function.

EXPERIMENTAL PROCEDURES

P. falciparum Culture, SILAC Labeling, and Transfection

P. falciparum strain 3D7 was cultured in O+ human erythrocytes and 10%

human serum or 0.5% Albumax I (Invitrogen) in RPMI-based media as

described (Trager and Jensen, 1976). Use of erythrocytes and serum from

human donors for parasite culture was approved by the NHS Cambridgeshire

4 Research Ethics Committee, and all donors supplied written informed

consent. SILAC labeling was performed as described (Nirmalan et al., 2004).

Transfection was performed as described (Nkrumah et al., 2006).

P. falciparum Palmitome Purification

Both ABE and MLCC were performed as described (Martin and Cravatt, 2009;

Wan et al., 2007). For palmitome purification from 2-BMP or DMSO treated

parasites, cultures were treated with 50 mM 2-BMP (2-bromohexadecanoic

acid, Sigma) or DMSO for 6 hr before collection for ABE. For western blotting

of palmitome samples, aliquots of each were separated by SDS-PAGE,

transferred to nitrocellulose, and probed with specific antisera as described

(Jones et al., 2006).

Mass Spectrometry and Data Analysis

For analysis of SILAC ABE and MLCC samples, control (light) and palmitome

(heavy) eluates were pooled and separated by SDS PAGE. Gels were

stained with colloidal Coomassie (Sigma) and bands were excised, de-

stained, and proteins were in-gel digested. Peptides were analyzed by

LC-MS/MS with an LTQ Orbitrap Velos mass spectrometer (Thermo). For

palmitome analysis after 2-BMP or DMSO treatment, samples were sepa-

rated by SDS-PAGE and processed as above. Peptides from 2-BMP or

DMSO samples were dimethyl stable isotope-labeled as described (Boer-

sema et al., 2009) and pooled for LC-MS/MS analysis. MS data files were

converted to PRIDE XML files with PRIDE Converter v2.5.0 and uploaded

to the PRIDE database (http://www.ebi.ac.uk/pride/) with accession numbers

17888–17897.

Data from SILAC experiments was analyzed with MaxQuant version

1.0.13.13 and Mascot server 2.2 (Matrix Science) (Cox and Mann, 2008) and
ented as a percentage of corresponding expression levels in DMSO treated

asion) were treated with 50 mM 2-BMP, and PfGAP45 targeting to the inner

ofluorescence assays. DMSO treated parasites were used as a control. Scale

5 expression. Saponin lysates from schizont stage parasites expressing native

i-HA monoclonal and with anti-PfGAP45 immune sera as a loading control.

45-HA expression.

targeting. Anti-HA and anti-PfGAP45 antisera were used to follow localization

tage PfGAP45-HA and PfGAP45-Npal-HA expressing parasites. Scale bars

of a peptide from PfGAP45 showing carbamidomethylation of cysteine 160.

t cys160 is one of five well-conserved C-terminal domain cysteines.

er Inc.
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dimethyl labeled peptide data was analyzed with MaxQuant version 1.1.1.36

with the integrated search engine Andromeda (Cox et al., 2011). MaxQuant

processed data was searched against a combined Human (IPI) and Plasmo-

dium falciparum (GeneDB) database. A protein FDR of 0.01 and a peptide

FDR of 0.01 were used for identification level cutoffs. Cutoff criteria for SILAC

experiments were decided individually for each purificationmethod and for the

ABE/MLCC overlap. Criteria were based on both individual ratio count and

individual enrichment ratios in comparison to aggregate ratios. Criteria for

palmitome analysis after DMSO or 2-BMP treatment were based on individual

enrichment ratios in comparison to aggregate ratios. Statistical analysis of

SILAC experiments was performed with Perseus (a MaxQuant statistical

package) considering only proteins with ratios in at least three of five SILAC

experiments. Significantly enriched proteins were identified by t testing with

Benjamini and Hochberg adjustment to generate a false discovery rate of 5%.

Analysis of 2-BMP-Treated Parasites and PfGAP45 Mutational

Analysis

For analysis of 2-BMP-treated P. falciparum by electronmicroscopy, parasites

were treated for 24 hr with 100 mM 2-BMP or DMSO before being collected

and processed as described (Moon et al., 2009). For determination of the

effect of 2-BMP on invasion, schizonts were treated with 2-BMP or DMSO,

and rings were counted by flow cytometry as described (Theron et al.,

2010). To determine whether the effect of 2-BMP was on schizonts or erythro-

cytes, both were separately treated with 2-BMP or DMSO, washed, mixed,

and invasion was measured as described (Theron et al., 2010). For all assays,

invasion in DMSO controls was considered 100% and the effect of 2-BMP

was compared to DMSO to determine invasion efficiency.

To determine the effect of 2-BMP on the glideosome, schizonts were treated

for 4 hr with 50 mM2-BMP, 50 mM2-BMP and 20 mMMG-132 (Calbiochem), or

DMSO before collection for western blotting and IFA analysis, performed as

described (Jones et al., 2006; Tonkin et al., 2004). For mutational analysis of

PfGAP45, PfGAP45-HA and PfGAP45-Npal-HA lines were created using the

Bxb1 integrase system with the 3D7attB parasite line (Nkrumah et al., 2006).

Western blotting and IFA of transfected lines was performed as above. Densi-

tometry was performed with ImageJ (available at http://rsbweb.nih.gov/ij/).

Supplemental Experimental Procedures

For complete details of all experiments and analysis methods, see the Supple-

mental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and seven tables and can be found with this article online at

http://dx.doi.org/10.1016/j.chom.2012.06.005.
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and Hang, H.C. (2010). Palmitoylome profiling reveals S-palmitoylation-

dependent antiviral activity of IFITM3. Nat. Chem. Biol. 6, 610–614.
er Inc.


	Analysis of Protein Palmitoylation Reveals a Pervasive Role in Plasmodium Development and Pathogenesis
	Introduction
	Results
	Palmitoylated P. falciparum Proteins Can Be Purified with Both Acyl-Biotin Exchange and Metabolic Labeling/Click Chemistry
	Large-Scale Purification of P. falciparum Palmitoylated Proteins
	ABE- and Click Chemistry-Based Palmitome Purification Methods Are Complementary
	The P. falciparum Palmitome
	Protein Palmitoylation Is Essential for Schizont Development and Is Directly Involved in Regulating Erythrocyte Invasion
	Protein Palmitoylation Directly Regulates the Stability of Invasion Motor Components PfGAP45 and PfMTIP
	The Dynamic Palmitome: 2-BMP Affects Palmitoylation on a Range of Proteins

	Discussion
	Experimental Procedures
	P. falciparum Culture, SILAC Labeling, and Transfection
	P. falciparum Palmitome Purification
	Mass Spectrometry and Data Analysis
	Analysis of 2-BMP-Treated Parasites and PfGAP45 Mutational Analysis
	Supplemental Experimental Procedures

	Supplemental Information
	Acknowledgments
	References


