119 research outputs found

    Induction of tumor-specific acquired immunity against already established tumors by selective stimulation of innate DEC-205+ dendritic cells

    Get PDF
    Two major distinct subsets of dendritic cells (DCs) are arranged to regulate our immune responses in vivo; 33D1+ and DEC-205+ DCs. Using anti-33D1-specific monoclonal antibody, 33D1+ DCs were successfully depleted from C57BL/6 mice. When 33D1+ DC-depleted mice were stimulated with LPS, serum IL-12, but not IL-10 secretion that may be mediated by the remaining DEC-205+ DCs was markedly enhanced, which may induce Th1 dominancy upon TLR signaling. The 33D1+ DC-depleted mice, implanted with syngeneic Hepa1-6 hepatoma or B16-F10 melanoma cells into the dermis, showed apparent inhibition of already established tumor growth in vivo when they were subcutaneously (sc) injected once or twice with LPS after tumor implantation. Moreover, the development of lung metastasis of B16-F10 melanoma cells injected intravenously was also suppressed when 33D1+ DC-deleted mice were stimulated twice with LPS in a similar manner, in which the actual cell number of NK1.1+CD3− NK cells in lung tissues was markedly increased. Furthermore, intraperitoneal (ip) administration of a very small amount of melphalan (l-phenylalanine mustard; l-PAM) (0.25 mg/kg) in LPS-stimulated 33D1+ DC-deleted mice helped to induce H-2Kb-restricted epitope-specific CD8+ cytotoxic T lymphocytes (CTLs) among tumor-infiltrating lymphocytes against already established syngeneic E.G7-OVA lymphoma. These findings indicate the importance and effectiveness of selective targeting of a specific subset of DCs, such as DEC-205+ DCs alone or with a very small amount of anticancer drugs to activate both CD8+ CTLs and NK effectors without externally added tumor antigen stimulation in vivo and provide a new direction for tumor immunotherapy

    CD4+ CD25+ FoxP3+ regulatory T cells suppress cytotoxicity of CD8+ effector T cells: implications for their capacity to limit inflammatory central nervous system damage at the parenchymal level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD4<sup>+ </sup>CD25<sup>+ </sup>forkhead box P3 (FoxP3)<sup>+ </sup>regulatory T cells (T reg cells) are known to suppress adaptive immune responses, key control tolerance and autoimmunity.</p> <p>Methods</p> <p>We challenged the role of CD4<sup>+ </sup>T reg cells in suppressing established CD8<sup>+ </sup>T effector cell responses by using the OT-I/II system <it>in vitro </it>and an OT-I-mediated, oligodendrocyte directed <it>ex vivo </it>model (ODC-OVA model).</p> <p>Results</p> <p>CD4<sup>+ </sup>T reg cells dampened cytotoxicity of an ongoing CD8<sup>+ </sup>T effector cell attack <it>in vitro </it>and within intact central nervous system tissue <it>ex vivo</it>. However, their suppressive effect was limited by the strength of the antigen signal delivered to the CD8<sup>+ </sup>T effector cells and the ratio of regulatory to effector T cells. CD8<sup>+ </sup>T effector cell suppression required T cell receptor-mediated activation together with costimulation of CD4<sup>+ </sup>T reg cells, but following activation, suppression did not require restimulation and was antigen non-specific.</p> <p>Conclusions</p> <p>Our results suggest that CD4<sup>+ </sup>T reg cells are capable of suppressing CD8<sup>+ </sup>T effector cell responses at the parenchymal site, that is, limiting parenchymal damage in autoimmune central nervous system inflammation.</p

    Characterization of Structural Features Controlling the Receptiveness of Empty Class II MHC Molecules

    Get PDF
    MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying “non-receptiveness.” Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study

    Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances

    Get PDF
    We use a genome-wide association of 1 million parental lifespans of genotyped subjects and data on mortality risk factors to validate previously unreplicated findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 13q21.31, and identify and replicate novel findings near ABO, ZC3HC1, and IGF2R. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst finding contradictory evidence at other loci. Gene set and cell-specific analyses show that expression in foetal brain cells and adult dorsolateral prefrontal cortex is enriched for lifespan variation, as are gene pathways involving lipid proteins and homeostasis, vesicle-mediated transport, and synaptic function. Individual genetic variants that increase dementia, cardiovascular disease, and lung cancer - but not other cancers - explain the most variance. Resulting polygenic scores show a mean lifespan difference of around five years of life across the deciles.Peer reviewe

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus

    Interaction Pattern of Arg 62 in the A-Pocket of Differentially Disease-Associated HLA-B27 Subtypes Suggests Distinct TCR Binding Modes

    Get PDF
    The single amino acid replacement Asp116His distinguishes the two subtypes HLA-B*2705 and HLA-B*2709 which are, respectively, associated and non-associated with Ankylosing Spondylitis, an autoimmune chronic inflammatory disease. The reason for this differential association is so far poorly understood and might be related to subtype-specific HLA:peptide conformations as well as to subtype/peptide-dependent dynamical properties on the nanoscale. Here, we combine functional experiments with extensive molecular dynamics simulations to investigate the molecular dynamics and function of the conserved Arg62 of the α1-helix for both B27 subtypes in complex with the self-peptides pVIPR (RRKWRRWHL) and TIS (RRLPIFSRL), and the viral peptides pLMP2 (RRRWRRLTV) and NPflu (SRYWAIRTR). Simulations of HLA:peptide systems suggest that peptide-stabilizing interactions of the Arg62 residue observed in crystal structures are metastable for both B27 subtypes under physiological conditions, rendering this arginine solvent-exposed and, probably, a key residue for TCR interaction more than peptide-binding. This view is supported by functional experiments with conservative (R62K) and non-conservative (R62A) B*2705 and B*2709 mutants that showed an overall reduction in their capability to present peptides to CD8+ T cells. Moreover, major subtype-dependent differences in the peptide recognition suggest distinct TCR binding modes for the B*2705 versus the B*2709 subtype

    Histone acetylome-wide associations in immune cells from individuals with active Mycobacterium tuberculosis infection

    Get PDF
    Host cell chromatin changes are thought to play an important role in the pathogenesis of infectious diseases. Here we describe a histone acetylome-wide association study (HAWAS) of an infectious disease, on the basis of genome-wide H3K27 acetylation profiling of peripheral blood granulocytes and monocytes from persons with active Mycobacterium tuberculosis (Mtb) infection and healthy controls. We detected >2,000 differentially acetylated loci in either cell type in a Singapore Chinese discovery cohort (n = 46), which were validated in a subsequent multi-ethnic Singapore cohort (n = 29), as well as a longitudinal cohort from South Africa (n = 26), thus demonstrating that HAWAS can be independently corroborated. Acetylation changes were correlated with differential gene expression. Differential acetylation was enriched near potassium channel genes, including KCNJ15, which modulates apoptosis and promotes Mtb clearance in vitro. We performed histone acetylation quantitative trait locus (haQTL) analysis on the dataset and identified 69 candidate causal variants for immune phenotypes among granulocyte haQTLs and 83 among monocyte haQTLs. Our study provides proof-of-principle for HAWAS to infer mechanisms of host response to pathogens

    Type I Interferon Drives Dendritic Cell Apoptosis via Multiple BH3-Only Proteins following Activation by PolyIC In Vivo

    Get PDF
    BACKGROUND: DC are activated by pathogen-associated molecular patterns (PAMPs), and this is pivotal for the induction of adaptive immune responses. Thereafter, the clearance of activated DC is crucial to prevent immune pathology. While PAMPs are of major interest for vaccine science due to their adjuvant potential, it is unclear whether and how PAMPs may affect DC viability. We aimed to elucidate the possible apoptotic mechanisms that control activated DC lifespan in response to PAMPs, particularly in vivo. METHODOLOGY/PRINCIPAL FINDINGS: We report that polyinosinic:polycytidylic acid (PolyIC, synthetic analogue of dsRNA) induces dramatic apoptosis of mouse splenic conventional DC (cDC) in vivo, predominantly affecting the CD8α subset, as shown by flow cytometry-based analysis of splenic DC subsets. Importantly, while Bim deficiency conferred only minor protection, cDC depletion was prevented in mice lacking Bim plus one of three other BH3-only proteins, either Puma, Noxa or Bid. Furthermore, we show that Type I Interferon (IFN) is necessary and sufficient for DC death both in vitro and in vivo, and that TLR3 and MAVS co-operate in IFNß production in vivo to induce DC death in response to PolyIC. CONCLUSIONS/SIGNIFICANCE: These results demonstrate for the first time in vivo that apoptosis restricts DC lifespan following activation by PolyIC, particularly affecting the CD8α cDC subset. Such DC apoptosis is mediated by the overlapping action of pro-apoptotic BH3-only proteins, including but not solely involving Bim, and is driven by Type I IFN. While Type I IFNs are important anti-viral factors, CD8α cDC are major cross-presenting cells and critical inducers of CTL. We discuss such paradoxical finding on DC death with PolyIC/Type I IFN. These results could contribute to understand immunosuppression associated with chronic infection, and to the optimization of DC-based therapies and the clinical use of PAMPs and Type I IFNs

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants

    Time for T? Immunoinformatics addresses the challenges of vaccine design for neglected tropical and emerging infectious diseases

    Get PDF
    Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world’s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere
    corecore