450 research outputs found

    Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Get PDF
    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and dis- charging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.Comment: arXiv admin note: text overlap with arXiv:1509.0400

    The ‘PINIT’ motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L

    Get PDF
    AbstractPIAS proteins, cytokine-dependent STAT-associated repressors, exhibit intrinsic E3-type SUMO ligase activities and form a family of transcriptional modulators. Three conserved domains have been identified so far in this protein family, the SAP box, the MIZ-Zn finger/RING module and the acidic C-terminal domain, which are essential for protein interactions, DNA binding or SUMO ligase activity. We have identified a novel conserved domain of 180 residues in PIAS proteins and shown that its ‘PINIT’ motif as well as other conserved motifs (in the SAP box and in the RING domain) are independently involved in nuclear retention of PIAS3L, the long form of PIAS3, that we have characterized in mouse embryonic stem cells

    Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas Gingivalis Infection

    Get PDF
    MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-alpha] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-alpha secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-alpha secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P. gingivalis infection

    VIS-NIR/SWIR Spectral Properties of H2O Ice Depending on Particle Size and Surface Temperature

    Get PDF
    Laboratory measurements were performed to study the spectral signature of H2O ice between 0.4 and 4.2 µm depending on varying temperatures between 70 and 220 K. Spectral parameters of samples with particle sizes up to ~1360 µm, particle size mixtures, and different particle shapes were analyzed. The band depth (BD) of the major H2O-ice absorptions at 1.04, 1.25, 1.5, and 2 µm offers an excellent indicator for varying particle sizes in pure H2O ice. The spectral changes due to temperature rather, but not exclusively, affect the H2O-ice absorptions located at 1.31, 1.57, and 1.65 µm and the Fresnel reflection peaks at 3.1 and 3.2 µm, which strongly weaken with increasing temperature. As the BDs of the H2O-ice absorptions at 1.31, 1.57, and 1.65 µm increase, the band centers (BCs) of the H2O-ice absorptions at 1.25 and 1.5 µm slightly shift to shorter wavelengths. However, the BCs of the strong H2O-ice absorptions can also be affected by saturation in the case of large particles. The collected spectra provide a useful spectral library for future investigations of icy satellites such as Ganymede and Callisto, the major targets of ESA’s JUICE mission

    Evolutionary analysis of the ENTH/ANTH/VHS protein superfamily reveals a coevolution between membrane trafficking and metabolism

    Get PDF
    BACKGROUND: Membrane trafficking involves the complex regulation of proteins and lipids intracellular localization and is required for metabolic uptake, cell growth and development. Different trafficking pathways passing through the endosomes are coordinated by the ENTH/ANTH/VHS adaptor protein superfamily. The endosomes are crucial for eukaryotes since the acquisition of the endomembrane system was a central process in eukaryogenesis. RESULTS: Our in silico analysis of this ENTH/ANTH/VHS superfamily, consisting of proteins gathered from 84 complete genomes representative of the different eukaryotic taxa, revealed that genomic distribution of this superfamily allows to discriminate Fungi and Metazoa from Plantae and Protists. Next, in a four way genome wide comparison, we showed that this discriminative feature is observed not only for other membrane trafficking effectors, but also for proteins involved in metabolism and in cytokinesis, suggesting that metabolism, cytokinesis and intracellular trafficking pathways co-evolved. Moreover, some of the proteins identified were implicated in multiple functions, in either trafficking and metabolism or trafficking and cytokinesis, suggesting that membrane trafficking is central to this co-evolution process. CONCLUSIONS: Our study suggests that membrane trafficking and compartmentalization were not only key features for the emergence of eukaryotic cells but also drove the separation of the eukaryotes in the different taxa

    Insights into metazoan evolution from <i>Alvinella pompejana</i> cDNAs

    Get PDF
    BackgroundAlvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures.ResultsWe have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity.ConclusionsOur study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates
    • …
    corecore