18,586 research outputs found
Chilodonella cyprini (Moroff, 1902) [Translation from: Izv.gos.nauchno-issled.Inst.ozer.i rech.ryb.kh-va 49 25-28, 1959]
The ciliated protozoan Chilodonella cyprini is described. Chilodon parasitizes the body, gills and fins of fishes. The infusoria produce irritation of the integument and strengthened mucous secretion. The sparse knowledsge of the ecology of chilodon is summarised and some advice on the struggle against cholodoniasis in carp given
Concerning pathogenicity of Dactylogyrus solidus Achmerov
Translated from: 1951 Doklady Akad. Nauk., USSR, vol. LXXVIII, no. 4, pp. 825-827. Pierre C. Oustinoff, translator; William J. Hargis, Jr., editor
On the systematic position of Ankyrocotyle baicalense Wlasenko
William J. Hargis Jr., Editor.Translated from: Doklady Akad. Nauk., USSR, 1948, vol. LIX, no. 2, p. 383-386
Superconductivity in the Kondo lattice model
We study the Kondo lattice model with additional attractive interaction
between the conduction electrons within the dynamical mean-field theory using
the numerical renormalization group to solve the effective quantum impurity
problem. In addition to normal-state and magnetic phases we also allow for the
occurrence of a superconducting phase. In the normal phase we observe a very
sensitive dependence of the low-energy scale on the conduction-electron
interaction. We discuss the dependence of the superconducting transition on the
interplay between attractive interaction and Kondo exchange.Comment: Submitted to ICM 2009 Conference Proceeding
Temperature dependence of surface stress across an order-disorder transition: p(1x2)O/W(110)
Strain relaxations of a p(1x2) ordered oxygen layer on W(110) are measured as
a function of temperature across the disordering transition using low-energy
electron diffraction. The measured strains approach values of 0.027 in the
[1-10] and -0.053 in the [001] direction. On the basis of the measured strain
relaxations, we give quantitative information on temperature-dependent surface
stress using the results of ab initio calculations. From the surface formation
energy for different strains, determined by first-principles calculations, we
estimate that surface stress changes from -1.1 for the ordered phase to -0.2N/m
for the disordered one along [1-10], and from 5.1 to 3.4 N/m along [001].
Moreover, our observation that the strains scale inversely with domain size
confirms that the strain relaxation takes place at the domain boundaries.Comment: 8 pages, 5 figure
Stress engineering at the nanometer scale: Two-component adlayer stripes
Spontaneously formed equilibrium nanopatterns with long-range order are
widely observed in a variety of systems, but their pronounced temperature
dependence remains an impediment to maintain such patterns away from the
temperature of formation. Here, we report on a highly ordered stress-induced
stripe pattern in a two-component, Pd-O, adsorbate monolayer on W(110),
produced at high temperature and identically preserved at lower temperatures.
The pattern shows a tunable period (down to 16 nm) and orientation, as
predicted by a continuum model theory along with the surface stress and its
anisotropy found in our DFT calculations. The control over thermal fluctuations
in the stripe formation process is based on the breaking/restoring of
ergodicity in a high-density lattice gas with long-range interactions upon
turning off/on particle exchange with a heat bath.Comment: 6 pages, 4 figure
Recommended from our members
Low-stabilisation scenarios and technologies for carbon capture and sequestration
Endogenous technology scenarios for meeting low stabilization CO2 targets are derived in this study and assessed regarding emission reductions and mitigation costs. The aim is to indentify the most important technology options for achieving low stabilization targets. The significance of an option is indicated by its achieved emission reduction and the mitigation cost increase, if this option were not available. Quantitative results are computed using a global multi-regional hard-linked hybrid model that integrates the economy, the energy sector and the climate system. The model endogenously determines the optimal deployment of technologies subject to a constraint on climate change. The alternative options in the energy sector comprise the most important mitigation technologies: renewables, biomass, nuclear, carbon capture and sequestration (CCS), and biomass with CCS as well as energy efficiency improvements. The results indicate that the availability of CCS technologies and espec. biomass with CCS is highly desirable for achieving low stabilization goals at low costs. The option of nuclear energy is different: although it could play an important role in the primary energy mix, mitigation costs would only mildly increase, if it could not be expanded. Therefore, in order to promote prudent climate change mitigation goals, support of CCS technologies reduces the costs and-thus-is desirable from a social point of view. © 2009 Elsevier Ltd. All rights reserved
Low-stabilisation scenarios and technologies for carbon capture and sequestration
Endogenous technology scenarios for meeting low stabilization CO2 targets are derived in this study and assessed regarding emission reductions and mitigation costs. The aim is to indentify the most important technology options for achieving low stabilization targets. The significance of an option is indicated by its achieved emission reduction and the mitigation cost increase, if this option were not available. Quantitative results are computed using a global multi-regional hard-linked hybrid model that integrates the economy, the energy sector and the climate system. The model endogenously determines the optimal deployment of technologies subject to a constraint on climate change. The alternative options in the energy sector comprise the most important mitigation technologies: renewables, biomass, nuclear, carbon capture and sequestration (CCS), and biomass with CCS as well as energy efficiency improvements. The results indicate that the availability of CCS technologies and espec. biomass with CCS is highly desirable for achieving low stabilization goals at low costs. The option of nuclear energy is different: although it could play an important role in the primary energy mix, mitigation costs would only mildly increase, if it could not be expanded. Therefore, in order to promote prudent climate change mitigation goals, support of CCS technologies reduces the costs and-thus-is desirable from a social point of view. © 2009 Elsevier Ltd. All rights reserved
Winter wheat: A model for the simulation of growth and yield in winter wheat
The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously
Exactly solvable model with two conductor-insulator transitions driven by impurities
We present an exact analysis of two conductor-insulator transitions in the
random graph model. The average connectivity is related to the concentration of
impurities. The adjacency matrix of a large random graph is used as a hopping
Hamiltonian. Its spectrum has a delta peak at zero energy. Our analysis is
based on an explicit expression for the height of this peak, and a detailed
description of the localized eigenvectors and of their contribution to the
peak. Starting from the low connectivity (high impurity density) regime, one
encounters an insulator-conductor transition for average connectivity
1.421529... and a conductor-insulator transition for average connectivity
3.154985.... We explain the spectral singularity at average connectivity
e=2.718281... and relate it to another enumerative problem in random graph
theory, the minimal vertex cover problem.Comment: 4 pages revtex, 2 fig.eps [v2: new title, changed intro, reorganized
text
- …