1,681 research outputs found

    The stratified evolution of a cool star

    Full text link
    A low mass star usually experiences stratification and abundance anomalies during its evolution. A 0.95 solar mass star with a metallicity Z = 0.004 is followed from the main-sequence to the Horizontal Branch (HB). On the main-sequence the larger effects of stratification may come from accretion as was suggested in relation to metallicity and planet formation. As it evolves through the giant branch, stratification appears around the hydrogen burning shell. It may create hydrodynamic instabilities and be related to abundance anomalies on the giant branch. After the He flash the star evolves to the HB. If it loses enough mass, it ends up a hot HB star (or in the field an sdB star) with effective temperatures larger than 11000 K. All sdB stars are observed to have an approximately solar iron abundance whatever their original metallicity, implying overabundances by factors of up to 100. So should the 0.95 solar mass star. How its internal hydrodynamic properties on the main sequence may influence its fate on the HB is currently uncertain.Comment: Astronomische Nachrichten - Astronomical Notes (AN) papers presented at the Cool Stars 17 conference 2012 (AN 334, issue 1-2

    Abundance anomalies in pre-main-sequence stars: Stellar evolution models with mass loss

    Full text link
    The effects of atomic diffusion on internal and surface abundances of A and F pre-main-sequence stars with mass loss are studied in order to determine at what age the effects materialize, as well as to further understand the processes at play in HAeBe and young ApBp stars. Self-consistent stellar evolution models of 1.5 to 2.8Msun with atomic diffusion (including radiative accelerations) for all species within the OPAL opacity database were computed and compared to observations of HAeBe stars. Atomic diffusion in the presence of weak mass loss can explain the observed abundance anomalies of pre-main-sequence stars, as well as the presence of binary systems with metal rich primaries and chemically normal secondaries such as V380 Ori and HD72106. This is in contrast to turbulence models which do not allow for abundance anomalies to develop on the pre-main-sequence. The age at which anomalies can appear depends on stellar mass. For A and F stars, the effects of atomic diffusion can modify both the internal and surface abundances before the onset of the MS. The appearance of important surface abundance anomalies on the pre-main-sequence does not require mass loss, though the mass loss rate affects their amplitude. Observational tests are suggested to decipher the effects of mass loss from those of turbulent mixing. If abundance anomalies are confirmed in pre-main-sequence stars they would severely limit the role of turbulence in these stars.Comment: 9 pages, 6 figures, accepeted for publicatio

    Horizontal Branch evolution, metallicity and sdB stars

    Full text link
    Context. Abundance anomalies have been observed in field sdB stars and in nearly all Horizontal Branch (HB) stars of globular clusters with Teff > 11 000K whatever be the cluster metallicity. Aims. The aim is to determine the abundance variations to be expected in sdB stars and in HB stars of metallicities Z \geq 0.0001 and what observed abundances teach us about hydrodynamical processes competing with atomic diffusion. Methods. Complete stellar evolution models, including the effects of atomic diffusion and radiative acceleration, have been computed from the zero age main-sequence for metallicities of Z0 = 0.0001, 0.001, 0.004 and 0.02. On the HB the masses were selected to cover the Teff interval from 7000 to 37000K. Some 60 evolutionary HB models were calculated. The calculations of surface abundance anomalies during the horizontal branch depend on one parameter, the surface mixed mass. Results. For sdB stars with Teff 11 000K in all observed clusters, independent of metallicity, it was found that most observed abundance anomalies (even up to ~ x 200) were compatible, within error bars, with expected abundances. A mixed mass of ~1.E-7 M\odot was determined by comparison with observations. Conclusions. Observations of globular cluster HB stars with Teff > 11 000K and of sdB stars with Teff < 37 000K suggest that most observed abundance anomalies can be explained by element separation driven by radiative acceleration occuring at a mass fraction of ~1.E-7 M\odot. Mass loss or turbulence appear to limit the separation between 1.E-7 M\odot and the surface.Comment: Accepted for publication by A&

    Alien Registration- Michaud, Marie O. (Van Buren, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/33263/thumbnail.jp

    Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.

    Get PDF
    In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits

    Models of Metal Poor Stars with Gravitational Settling and Radiative Accelerations: I. Evolution and Abundance Anomalies

    Get PDF
    Evolutionary models have been calculated for Pop II stars of 0.5 to 1.0MM_\odot from the pre-main-sequence to the lower part of the giant branch. Rosseland opacities and radiative accelerations were calculated taking into account the concentration variations of 28 chemical species, including all species contributing to Rosseland opacities in the OPAL tables. The effects of radiative accelerations, thermal diffusion and gravitational settling are included. While models were calculated both for Z=0.00017 and 0.0017, we concentrate on models with Z=0.00017 in this paper. These are the first Pop II models calculated taking radiative acceleration into account. It is shown that, at least in a 0.8MM_\odot star, it is a better approximation not to let Fe diffuse than to calculate its gravitational settling without including the effects of grad(Fe)g_{rad}(Fe). In the absence of any turbulence outside of convection zones, the effects of atomic diffusion are large mainly for stars more massive than 0.7MM_\odot. Overabundances are expected in some stars with \teff \ge 6000K. Most chemical species heavier than CNO are affected. At 12 Gyr, overabundance factors may reach 10 in some cases (e.g. for Al or Ni) while others are limited to 3 (e.g. for Fe). The calculated surface abundances are compared to recent observations of abundances in globular clusters as well as to observations of Li in halo stars. It is shown that, as in the case of Pop I stars, additional turbulence appears to be present.Comment: 40 pages, 17 color figures, to appear in The Astrophysical Journal, April 2002 (paper with original high resolution figures can be found at http://www.cerca.umontreal.ca/~richer/Fichiersps/popII_1.ps

    AmFm and lithium gap stars: Stellar evolution models with mass loss

    Full text link
    A thorough study of the effects of mass loss on internal and surface abundances of A and F stars is carried out in order to constrain mass loss rates for these stars, as well as further elucidate some of the processes which compete with atomic diffusion. Self-consistent stellar evolution models of 1.3 to 2.5 M_sun stars including atomic diffusion and radiative accelerations for all species within the OPAL opacity database were computed with mass loss and compared to observations as well as previous calculations with turbulent mixing. Models with unseparated mass loss rates between 5 x 10^-14 and 10^-13 M_sun/yr reproduce observations for many cluster AmFm stars as well as Sirius A and o Leonis. These models also explain cool Fm stars, but not the Hyades lithium gap. Like turbulent mixing, these mass loss rates reduce surface abundance anomalies; however, their effects are very different with respect to internal abundances. For most of the main sequence lifetime of an A or F star, surface abundances in the presence of such mass loss depend on separation which takes place between log(Delta M/M_star)= -6 and -5. The current observational constraints do not allow us to conclude that mass loss is to be preferred over turbulent mixing (induced by rotation or otherwise) in order to explain the AmFm phenomenon. Internal concentration variations which could be detectable through asteroseismic tests should provide further information. If atomic diffusion coupled with mass loss are to explain the Hyades Li gap, the wind would need to be separated.Comment: 27 pages, 25 figures, accepted for publication in A&

    Exactly solvable models in 2D semiclassical dilaton gravity and extremal black holes

    Get PDF
    Previously known exactly solvable models of 2D semiclassical dilaton gravity admit, in the general case, only non-extreme black holes. It is shown that there exist exceptional degenerate cases, that can be obtained by some limiting transitions from the general exact solution, which include, in particular, extremal and ultraextremal black holes. We also analyze properties of extreme black holes without demanding exact solvability and show that for such solutions quantum backreaction forbids the existence of ultraextreme black holes. The conditions,under which divergencies of quantum stresses in a free falling frame can disappear, are found. We derive the closed equation with respect to the metric as a function of the dilaton field that enables one, choosing the form of the metric, to restore corresponding Lagrangian. It is demonstrated that exactly solvable models, found earlier, can be extended to include an electric charge only in two cases: either the dilaton-gravitation coupling is proportional to the potential term, or the latter vanishes. The second case leads to the effective potential with a negative amplitude and we analyze, how this fact affects the structure of spacetime. We also discuss the role of quantum backreaction in the relationship between extremal horizons and the branch of solutions with a constant dilaton.Comment: 31 pages. In v.2 typo in Ref. [2] corrected, 4 references added. Accepted in Class. Quant. Gra

    Flutter analysis of a morphing wing technology demonstrator : numerical simulation and wind tunnel testing

    Get PDF
    As part of a morphing wing technology project, the flutter analysis of two finite element models and the experimental results of a morphing wing demonstrator equipped with aileron are presented. The finite element models are representing a wing section situated at the tip of the wing; the first model corresponds to a traditional aluminium upper surface skin of constant thickness and the second model corresponds to a composite optimized upper surface skin for morphing capabilities. The two models were analyzed for flutter occurrence and effects on the aeroelastic behaviour of the wing were studied by replacing the aluminium upper surface skin of the wing with a specially developed composite version. The morphing wing model with composite upper surface was manufactured and fitted with three accelerometers to record the amplitudes and frequencies during tests at the subsonic wind tunnel facility at the National Research Council. The results presented showed that no aeroelastic phenomenon occurred at the speeds, angles of attack and aileron deflections studied in the wind tunnel and confirmed the prediction of the flutter analysis on the frequencies and modal displacements
    corecore