163 research outputs found

    Assessment of total body water in paediatric patients on dialysis

    Get PDF
    Background Various anthropometric techniques are used to assess total body water in children on dialysis; however, their predictive accuracy and precision has not been validated. Methods We compared total body water measurements obtained by deuterium oxide (D2O) dilution with predictions of total body water from (1) height and weight, (2) skinfold measurements, and (3) bioelectrical impedance analysis, using previously published formulae for healthy children. Measurements were performed in 14 patients on peritoneal and in nine patients on haemodialysis, aged 4-22 years. Results In the total population of dialysed patients, weight was the strongest single predictor of total body water (R2=0.93) followed by the resistance index (RI=height2/impedance; R2=0.85) and height (R2=0.93). A prediction formula based on height and weight predicted total body water with a residual mean square error (RMSE) of 1.97 l (coefficient of variation (CV)=10.0%) and with a systematic overestimation of true total body water by 0.4%. A prediction equation based on skinfold measurements yielded a total body water estimate with an RMSE of 2.15 1 (CV=10.5%) and overpredicted true total body water by an average of 2.2%. Using three published prediction equations incorporating RI, RMSEs of 2.78 1 (CV=14.1%) with a mean under- or overestimation of true total body water by 6.9, 7.1, and 0.8% respectively, were achieved. The prediction of total body water was optimized by linear combinations of RI or the log-transformed sum of four skinfolds (logsum) with weight by the following equations: total body water (1) = 9.97−3.13×logsum +0.59×weight (kg) (1) (R2 = 0.951; RMSE=1.67 1; CV = 8.17%). total body water (1) = 1.99 + 0.144 × RI (Ohm/cm2) + 0.40 × weight (kg) (2) (R2 = 0.949; RMSE = 1.671; CV = 8.53%). The fit of these prediction formulae, which were derived from the total population, did not differ significantly between haemo- and peritoneal dialysis patients or between boys and girls. Conclusions Both skinfold measurements and bioelectrical impedance analysis can be used to improve the height- and weight- based prediction of total body water in children on dialysi

    Effects of rhGH and rhIGF-1 on renal growth and morphology.

    Get PDF
    It is known that in rodents recombinant human growth hormone (rhGH) and recombinant human insulin-like growth factor (rhIGF-1) increase renal mass. It is uncertain, however, whether renal mass increases in proportion to body growth, or whether renal growth is stimulated selectively. In 120 to 150 g female Sprague-Dawley rats, we measured the effects of rhGH and rhIGF-1 and their combination by the following parameters: kidney weight/body weight ratio, DNA/protein ratio, mRNA of GH receptor and of IGF-1, mitosis index and PCNA (by immunohistology), zonal architecture and glomerular diameter by micromorphometry. Both rhGH and rhIGF-1 dose-dependently increased renal weight and body weight over vehicle treated controls. With rhGH, liver dry weight/body weight ratio increased, but kidney dry weight/body weight ratio remained unchanged (0.99 +/- 0.06 x 10(-3) vs. 1.02 +/- 0.07 in vehicle controls). In contrast, a significant increase of kidney dry weight/body weight ratio was seen in rats treated with rhIGF-1 (1.3 +/- 0.21 x 10(-3). Addition of high doses of rhGH to high doses of rhIGF-1 caused no further increase of the ratio despite a significant further increase of body weight. rhGH increased the abundance of renal GH receptor mRNA (0.46 +/- 0.32 amol/microgram DNA vs. 0.08 +/- 0.07 in controls) and of IGF-1 mRNA (1.35 +/- 0.5 pg/micrograms DNA vs. 0.35 +/- 0.17), whereas no change was seen with IGF-1 treatment. rhGH and rhIGF-1 increased kidney DNA/protein ratio, mitoses and PCNA expression in various renal structures.(ABSTRACT TRUNCATED AT 250 WORDS

    Reduced Systolic Myocardial Function in Children with Chronic Renal Insufficiency

    Get PDF

    Catch-up growth follows an abnormal pattern in experimental renal insufficiency and growth hormone treatment normalizes it

    Get PDF
    The primary goal of this study was to determine if the ability to undergo catch-up growth following a transient injury is preserved in an experimental model of moderate chronic renal failure (CRF) and the effect of growth hormone (GH) administration on such phenomenon. Young rats were subtotally nephrectomized (days 0 and 4) (Nx). From days 11 to 13, food intake was restricted in subgroups of Nx and control (C) rats (NxR and CR). After refeeding, subgroups of NxR and CR rats received GH from days 14 to 20 (NxRGH and CRGH). Rats were killed on days 14 (C, CR, Nx, NxR), 17 and 21 (C, CR, CRGH, Nx, NxR, NxRGH), and 36 (C, CR, Nx, NxR). Longitudinal growth rate was measured by osseous front advance in the proximal tibiae. With refeeding, growth rate of CR, NxR, and NXrGH rats became significantly greater than that of C, indicating catch-up growth. This occurred later and with lower growth rate in NxR than in CR rats, whereas the characteristics of catch-up growth in CR and NxRGH animals were similar. Changes in growth rate were associated with modifications in the morphology and proliferative activity of growth cartilage. We conclude that catch-up growth occurs in renal insufficiency but follows a different pattern from that observed with normal renal function. GH treatment normalizes the pattern of catch-up growth in CRF. Changes in growth velocity are associated to modifications in the structure and dynamics of growth cartilage

    Change in left ventricular geometry during antihypertensive treatment in children with primary hypertension

    Get PDF
    The pattern of the left ventricle (LV) has important significance in adults with hypertension. The aim of the present study was to analyze changes and determinants of LV geometry after 1 year of antihypertensive treatment in children with primary hypertension (PH) in relation to metabolic abnormalities and anthropometrical parameters. In 86 children (14.1 ± 2.4 years) with newly diagnosed PH, LV geometry and biochemical parameters before and after 12 months of standard antihypertensive therapy were assessed. At baseline, normal LV geometry (NG) was found in 42 (48.9%), concentric remodeling (CR) in 4 (4.6%), concentric hypertrophy (CH) in 8 (9.3%), and eccentric hypertrophy (EH) in 32 (37.2%) patients. The prevalence of NG in patients with severe hypertension was significantly lower than in patients with ambulatory hypertension. There were no differences in dipping status in relation to LV geometry. Patients with CH and EH were more viscerally obese than patients with NG. Patients with CH had higher diastolic blood pressure in comparison with EH patients (p < 0.05). The main predictor of relative wall thickness (RWT) was the triglycerides to high density lipoprotein cholesterol (TG/HDL) ratio (R2 = 0.319, β = 0.246, p = 0.004). Patients received 12 months of antihypertensive treatment, either lifestyle modification only (n = 37) or lifestyle modification plus antihypertensive medications (n = 49) if severe ambulatory hypertension or target organ damage were present. After 12 months of treatment the prevalence of EH (37.2% vs 18.6%, p = 0.003) decreased but prevalence of CH did not change. Patients in whom RWT decreased also decreased waist circumference and TG/HDL; the main predictor of RWT decrease was a decrease of the TG/HDL ratio (β = 0.496, R2 = 0.329, p = 0.002). In adolescents with PH, LV geometry is related to central obesity and insulin resistance. Decrease of abdominal obesity and insulin resistance are the most important predictors of normalization of LV geometry, however CH has lower potential to normalize LV geometry

    Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact

    Get PDF
    Muscle wasting in chronic kidney disease (CKD) and other catabolic diseases (e.g. sepsis, diabetes, cancer) can occur despite adequate nutritional intake. It is now known that complications of these various disorders, including acidosis, insulin resistance, inflammation, and increased glucocorticoid and angiotensin II production, all activate the ubiquitin–proteasome system (UPS) to degrade muscle proteins. The initial step in this process is activation of caspase-3 to cleave the myofibril into its components (actin, myosin, troponin, and tropomyosin). Caspase-3 is required because the UPS minimally degrades the myofibril but rapidly degrades its component proteins. Caspase-3 activity is easily detected because it leaves a characteristic 14kD actin fragment in muscle samples. Preliminary evidence from several experimental models of catabolic diseases, as well as from studies in patients, indicates that this fragment could be a useful biomarker because it correlates well with the degree of muscle degradation in dialysis patients and in other catabolic conditions

    The non-immunosuppressive management of childhood nephrotic syndrome

    Get PDF
    • …
    corecore