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Increased left ventricular (LV) mass in children with chronic renal insufficiency (CRI) might be adaptive to sustain myocardial
performance in the presence of increased loading conditions. It was hypothesized that in children with CRI, LV systolic
function is impaired despite increased LV mass (LVM). Standard echocardiograms were obtained in 130 predialysis children
who were aged 3 to 18 yr (59% boys) and had stages II through IV chronic kidney disease and in 130 healthy children of similar
age, gender distribution, and body build. Systolic function was assessed by measurement of fractional shortening at the
endocardial (eS) and midwall (mS) levels and computation of end-systolic stress (myocardial afterload). The patients with CRI
exhibited a 6% lower eS (33.1 � 5.5 versus 35.3 � 6.1%; P < 0.05) and 10% lower mS (17.8 � 3.1 versus 19.7 � 2.7%; P < 0.001)
than control subjects in the presence of significantly elevated BP, increased LVM, and more concentric LV geometry. Whereas
the decreased eS was explained entirely by augmented end-systolic stress, mS remained reduced after correction for
myocardial afterload. The prevalence of subclinical systolic dysfunction as defined by impaired mS was more than five-fold
higher in patients with CRI compared with control subjects (24.6 versus 4.5%; P < 0.001). Systolic dysfunction was most
common (48%) in patients with concentric hypertrophy and associated with lower hemoglobin levels. CRI in children is
associated with impaired intrinsic LV contractility, which parallels increased LVM.
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A lterations of cardiac morphology and function are a
common characteristic of ESRD in adult patients and
contribute to the higher cardiovascular risk that is asso-

ciated with this condition (1). Even in the pediatric age, up to 25%
of deaths in patients with ESRD are attributable to cardiovascular
disease (2). Previous echocardiographic studies indicate that
young patients with chronic renal insufficiency (CRI) and ESRD
have abnormal left ventricular (LV) geometry and high prevalence
of LV hypertrophy (LVH) (3–6). We recently reported that sub-
stantial LV remodeling of both concentric and eccentric type oc-
curs also at early stages of CRI in children (7). We found abnormal

LV anatomy mainly related to male gender, anemia, and pon-
derosity but not to BP.

In adults with CRI, LVH is thought to be adaptive initially to
improve pump function and lower wall stress in the face of
increased afterload (BP) and preload (circulating volume) (8).
Consistent with this line of interpretation, normal or even su-
pranormal LV systolic function has been observed in children
with CRI, suggesting that increased LV mass (LVM) may rep-
resent a compensatory response that balances increased hemo-
dynamic load also in young patients (6,9). In a more recent
study in children who were undergoing dialysis, resting LV
systolic performance was increased, possibly attributable to the
presence of LVH, but LV functional reserve during exercise was
decreased, suggesting that LVH actually was maladaptive (10).
In the same study, the response to exercise was normal in
children with mild to moderate CRI, suggesting that different
physiopathologic mechanisms may be operating in LV remod-
eling in predialysis and dialysis patients.
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In adults, assessment of LV systolic function at the chamber
level has been shown to overestimate the real extent of myo-
cardial performance in the presence of concentric LV geometry
(11,12). Analysis of LV shortening at the midwall level (mid-
wall shortening [mS]) more accurately reflects the contractile
force independent of pathologic changes in LV geometry,
which have been demonstrated to preserve LV chamber func-
tion when myocardial contractility is depressed (11). At
present, there is no information on LV wall mechanics in chil-
dren with predialysis CRI. Accordingly, our study was de-
signed to assess whether children with mild to moderate CRI
have impaired LV systolic wall mechanics at rest, independent
of possibly adaptive changes in LV geometry.

Materials and Methods
Patients and Control Subjects

The ongoing Effect of Strict Blood Pressure Control and ACE Inhi-
bition on the Progression of CRI in Pediatric Patients (ESCAPE) trial is
a European multicenter study that is evaluating predialysis white chil-
dren who are being treated for CRI in 33 pediatric nephrology units in
13 European countries (see Acknowledgments); of these, 130 (77 boys
and 53 girls) had echocardiographic recordings that were suitable for
the analysis of both cardiac geometry and systolic function and com-
prised the population of this analysis. Children were studied as part of
the screening procedure for the ESCAPE trial (13). The study protocol,
including echocardiographic examinations, ambulatory BP monitoring,
and biochemical assessments, was designed in adherence to the Dec-
laration of Helsinki and approved by the local ethical committees.
Written informed consent was given from all parents, and informed
consent or assent from the patients was given as appropriate. A group
of 130 normotensive white individuals who were studied in Naples,
Italy, including a school population and normal volunteers (7,14),
formed the normal reference population for our study.

Laboratory Assessments
A full biochemical profile was obtained locally in each center using

standard laboratory techniques, as previously reported (7,13).

Echocardiography
Echocardiograms initially were obtained in 179 children, according

to local procedures and in the absence of standardization of acquisition
methods, using different commercial machines. Videotapes were
shipped to the Reading Center, at the Echocardiography Laboratory of
the Department of Clinical and Experimental Medicine, “Federico II”
University of Naples, for quality check and off-line reading. Quality of
two-dimensional echocardiograms for measurements of LV dimensions
and systolic function was considered sufficient in 130 individuals (73%
of echocardiograms). All echocardiograms were coded and examined
off-line by two independent readers according to standard procedures
(13,15), as previously reported (7). LVM was obtained according to a
necropsy-validated formula (16,17) and normalized for height in meters
to the allometric power of 2.7 (m2.7, LVM index [LVMI]) (18). LVH was
defined as an LVMI �95th percentile of the healthy control subjects (38
g/m2.7) for both male and female individuals, as previously suggested
(7).

For evaluation of the concentricity of LV geometry, myocardial thick-
ness (wall�septum) was divided by LV minor axis (diameter) to gen-
erate a relative wall thickness (RWT), normalized to a mean age of 10
years (19). A value of 0.38 (95th percentile of controls) was used as the
cutoff to define concentric LV geometry (7).

Evaluation of LV Systolic Function
LV systolic function was determined by linear measures of shorten-

ing of LV minor axis both at the endocardial level (endocardial short-
ening [eS]) and at the midwall level (mS) (11,12). Systolic dysfunction
was categorized as mS �16% (the fifth lowest percentile of normal
distribution in the control group of this study).

To account for the effect of myocardial afterload and for the demon-
strated influence of age on the stress/shortening relations, we calcu-
lated circumferential end-systolic wall stress (�), a measure of myocar-
dial afterload, assuming a cylindrical geometry (20) and using BP
values that were measured in a sitting position during an office visit.
Because shortening is a negative function of �, the derived equation can
be used to predict the corresponding value of both eS and mS for a
given �. Thus, age-adjusted, stress-corrected endocardial fractional
shortening (eSc) or stress-corrected mS (mSc) were computed as the
ratio between observed and predicted values and expressed as a per-
centage of the predicted value, using the following equations that were
derived from our reference population (21):

eSc � eS/(90.13 to 24.89 � log10 [�] � 0.32 [age] � 4.16) � 100
mSc � mS/(30.78 to 3.98 � log10 [�] � 0.26 [age] � 2.75) � 100
Therefore eSc and mSc describe LV chamber and myocardial con-

tractility, respectively.

Statistical Analyses
All results are expressed as means � SD. Statistical analysis was

performed using SPSS 12.0 (SPSS, Chicago, IL). Between-group differ-
ences were assessed by ANOVA. The Ryan-Einot-Gabriel-Welsch F post
hoc test for multiple comparisons was used for more than two groups.
�2 statistics (with Monte Carlo method to compute exact two-tailed �

value, when appropriate) was used to examine categorical variables.
When appropriate, analysis of covariance was used to control for
potential confounders. Sidak’s adjustment of P value was adopted for
multiple comparisons in analysis of covariance when needed. Two-
tailed P � 0.05 was considered statistically significant.

Results
Patient Characteristics

The baseline clinical characteristics of the patients and con-
trol subjects are given in Table 1. Among the 130 patients with
CRI, 33% were class II (i.e., GFR 60 to 89 ml/min per 1.73 m2),
43% class III (GFR 30 to 59 ml/min per 1.73 m2) and 22% class
IV (GFR 15 to 29 ml/min per 1.73 m2). The underlying renal
diseases were renal hypo/dysplasia in 72%, other congenital or
hereditary disease in 16%, and glomerulopathies in 12%.
Whereas age, gender distribution, and anthropometric mea-
sures did not differ between patients and control subjects,
casual office BP was significantly higher in patients with CRI
than in control subjects (P � 0.0001).

LV Morphology and Function
As previously reported (7), children with CRI had increased

LV diameter, LVM, and RWT compared with healthy control
subjects (Table 2). eS was slightly lower in children with CRI
than in control subjects (P � 0.05). Correction for end-systolic
stress yielded completely normal eS values, suggesting that the
apparent decrease in eS was due entirely to increased myocar-
dial afterload. In contrast, mS was reduced markedly (P �

0.001; Table 2), and this reduction was independent of myocar-
dial afterload as shown by a persistent difference in stress-
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corrected mS (P � 0.001). As illustrated in Figure 1, mS was
lower in children with CRI compared with healthy control
subjects at any given value of fractional shortening measured at
the chamber level (P � 0.001). The overall prevalence of systolic
dysfunction was increased five-fold in the CRI group (P �

0.01). Systolic dysfunction was significantly more prevalent in
patients with concentric LV geometry (48% of patients) than in
patients with either normal LV geometry or eccentric LVH (P �

0.0001; Figure 2).

Characteristics of Children with Systolic Dysfunction
LV mS, expressed either as raw value or corrected for end-

systolic stress, was positively associated with GFR (r � 0.20 and
0.21 respectively; each P � 0.05) and negatively with RWT (r �

�0.42 and �0.52 respectively; each P � 0.0001). Children with
normal or impaired systolic function did not differ with respect
to LVMI (36.4 � 13.5 versus 36.2 � 12.6 g/m2.7), but those with
systolic dysfunction at the midwall level exhibited greater RWT
(0.36 � 0.07 versus 0.33 � 0.05; P � 0.005). LV systolic function
was not correlated with any of the BP measures (casual or 24-h
ambulatory BP). Children with reduced systolic function had
lower hemoglobin levels than patients with normal mS (11.8 �

1 versus 12.4 � 1.5 g/dl). Notably, in the patients with subnor-
mal systolic function, mS was inversely correlated with the
current rate of GFR loss (r � 0.55, P � 0.005).

Discussion
Our study reports on the largest population sample of chil-

dren who have CRI and in whom LV function has been as-
sessed, including intrinsic wall contractility as assessed by com-
putation of echocardiographic parameters that match LV
chamber function and wall mechanics with a reliable measure
of myocardial afterload. This study shows that despite normal
LV chamber function, myocardial dysfunction can be identified
at the midwall level in children and adolescents with mild to
moderate CRI. Similar to adults with arterial hypertension (22),
this pathology is more pronounced in the presence of concen-
tric LV geometry.

In children with CRI, a single report by Colan et al. (23) found
a significantly reduced ejection fraction in children who were
undergoing dialysis, whereas most other previous studies of
children with predialysis or dialysis-dependent CRI showed a
normal or even supranormal ejection fraction at rest (6,9,10,24).

Table 1. Anthropometric and BP characteristics of 130 patients with CRI and 130 healthy control subjectsa

Characteristic Patients with CRI Control Subjects P

Gender (% boys) 59 53 NS
Age (yr) 11.3 � 4.1 10.6 � 3.6 NS
Height (cm) 139 � 20 142 � 23 NS
Weight (kg) 39.6 � 16.9 36.9 � 16.4 NS
BMI (kg/m2) 18.3 � 3.1 18.0 � 3.6 NS
Casual systolic BP (mmHg) 118 � 13 106 � 9 �0.001
Casual diastolic BP (mmHg) 73 � 11 62 � 9 �0.001
Heart rate (beats/min) 83 � 19 81 � 15 NS
Duration of CRI (yr) 6.3 � 4.4 —
CKD class II/III/IV (%) 33/43/22 —
GFR (ml/min per 1.73 m2) 50 � 19 —
Urinary protein excretion (mg/m2 per d) 735 � 1338 —
Blood hemoglobin (g/dl) 12.1 � 1.6 —

aData are means � SD. BMI, body mass index; CKD, chronic kidney disease; CRI, chronic renal insufficiency.

Table 2. LV morphology and systolic function in 130 patients with CRI and 130 healthy control subjectsa

Parameter Patients with CRI Control Subjects P

LV end-diastolic diameter indexed for height (cm/m) 3.01 � 0.36 2.91 � 0.29 �0.005
LV mass index (g/m2.7) 36.4 � 13.2 26.5 � 6.2 �0.001
Relative wall thickness (%) 0.34 � 0.05 0.30 � 0.06 �0.05
eS (%) 33.1 � 5.5 35.3 � 6.1 �0.05
mS (%) 17.8 � 3.1 19.7 � 2.7 �0.001
End-systolic stress (kdynes/cm2) 144 � 38 126 � 31 �0.002
Age and stress-corrected eS (% predicted) 100.9 � 12.1 100.4 � 13.0 NS
Age and stress-corrected mS (% predicted) 91.1 � 15.6 101.5 � 13.9 �0.001
Reduced systolic function (%) 24.6 4.5 �0.01

aeS, endocardial shortening; mS, midwall shortening.

J Am Soc Nephrol 18: 593–598, 2007 Systolic Function in Children with CRI 595



However, systolic dysfunction is well established in adult pa-
tients who have longstanding CRI and are undergoing dialysis
(25), and mild systolic dysfunction also has been observed in
dialyzed children during exercise testing (4). Therefore, it has
been suggested that the observation of normal (or even su-
pranormal) systolic function in pediatric patients with CRI
represents an adaptive mechanism to increase cardiac output
and improve renal perfusion. However, no previous pediatric

study has analyzed LV function at both the endocardial and the
midwall levels, related LV mechanics to myocardial afterload,
and examined the relationship between systolic function and
LV geometry.

In the two previous studies that assessed LV geometry in
children, concentric LVH was frequent in predialysis CRI, at a
prevalence that might explain the seemingly normal LV func-
tion at the chamber level (6,7). In fact, concentric LV geometry
has been demonstrated to preserve LV chamber function even
when myocardial contractility is depressed (11). We found a
slight reduction of average systolic function at the LV chamber
level; however, this was readily explained by the increased
myocardial afterload (end-systolic stress, as seen in Table 2)
despite increased myocardial wall thickness, suggesting that
the compensatory increase in myocardial thickness was not
sufficient to offset the elevated end-systolic stress. We recently
demonstrated that the hemodynamic pattern of children with
CRI is characterized by a combined pressure and volume over-
load (7). This condition might offset at least in part the effect of
wall thickness (Laplace principle) (26). When endocardial frac-
tional shortening was adjusted for end-systolic stress, LV cham-
ber function in fact was completely normal, providing evidence
that the slight decrease of uncorrected endocardial fractional
shortening was due to an “afterload mismatch” (i.e., the reduc-
tion of net LV chamber performance resulting from increased
afterload that is not fully compensated by an adequate increase
in—albeit normal—endocardial function).

In contrast, mS, a more direct measure of wall mechanics,
was decreased substantially. The reduction remained evident
also after correction for the level of myocardial afterload, high-
lighting a decrease in intrinsic myocardial contractility. Al-
though midwall systolic function was globally correlated with
GFR, we were unable to associate any specific sequelae of CRI
with the impaired myocardial function in this pediatric popu-
lation with mild to moderate chronic kidney disease. The ob-
served slightly lower hemoglobin level in the patients with
systolic dysfunction may indicate a subclinical effect of subop-
timal myocardial oxygenation in early renal anemia.

Our finding of a significant prevalence of subclinical systolic
dysfunction in children with mild to moderate CRI may be of
clinical relevance, because in hypertensive adults with normal
LV chamber function, reduced midwall function is associated
with an unfavorable cardiovascular prognosis (27). Remark-
ably, in patients who exhibited systolic dysfunction, we also
noted a close quantitative relationship between mS and the
current CRI progression rate. It is tempting to speculate about
a putative common mechanism underlying both cardiac dys-
function and progressive loss of renal function, which might
include sympathetic hyperactivation and/or overstimulation of
the renin-angiotensin system at the tissue levels.

Conclusion
LV systolic function measured at the midwall level is de-

creased significantly in children with predialysis CRI. This
impairment is independent of increased myocardial afterload
and BP but linked to concentric LV geometry. In view of similar
observations in adults, the combination of concentric LV geom-

Figure 1. Relationship between fractional shortening (FS%) and
midwall shortening (mS%) in normal control subjects (F, solid
line) and children with chronic renal insufficiency (CRI) and
nonconcentric (�, dotted line) or concentric (stars, dashed line)
left ventricular (LV) geometry.

Figure 2. Percentage of patients with impaired systolic function
according to LV geometry (concentric versus eccentric versus
normal geometry) in children with CRI (n � 130).
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etry with midwall dysfunction might represent a cardiac phe-
notype designating an increased risk for development of overt
cardiovascular disease.
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Serdaroglu (Izmir), H. Eichstädt (Leipzig), K. Hohbach-Hohenfellner
(Mainz*), N. Jeck, G. Klaus (Marburg*), G. Ardissino, S. Testa (Milano*),
G. Montini (Padova*), M. Charbit, P. Niaudet (Paris*), J. Dusek (Pra-
gue), A. Caldas-Afonso (Porto), S. Picca, M.C. Matteucci (Rome*), M.
Wigger (Rostock*), M. Fischbach, J. Terzic (Strasbourg), T. Urasinski, J.
Fydryk (Szezecin*), L. Peruzzi, R. Coppo (Torino*), A. Jankauskiene
(Vilnius), M. Litwin, R. Grenda (Warszawa*), K. Arbeiter (Vienna), and
T.J. Neuhaus (Zurich*).

*These centers contributed patients to the echocardiography study.

Disclosures
None.

References
1. Parfrey PS, Foley RN: The clinical epidemiology of cardiac

disease in chronic renal failure. J Am Soc Nephrol 10: 1606–
1615, 1999

2. Parekh RS, Caroll CE, Wolfe RA, Port FK: Cardiovascular
mortality in children and young adults with end-stage
kidney disease. J Pediatr 141: 191–197, 2002

3. Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA,
Khoury P, Strife CF: Severe left ventricular hypertrophy in
pediatric dialysis: Prevalence and predictors. Pediatr Neph-
rol 14: 898–902, 2000

4. Foley RN, Parfrey PS, Harnett JD, Kent GM, Martin CJ,
Murray DC, Barre PE: Clinical and echocardiographic dis-
ease in patients starting end-stage renal disease therapy.
Kidney Int 47: 186–192, 1995

5. Levin A, Singer J, Thompson CR, Ross H, Lewis M: Prev-
alent left ventricular hypertrophy in the predialysis popu-
lation: Identifying opportunities for intervention. Am J Kid-
ney Dis 27: 347–354, 1996

6. Johnstone LM, Jones CL, Grigg LE, Wilkinson JL, Walker
RG, Powell HR: Left ventricular abnormalities in children,
adolescents and young adults with renal disease. Kidney Int
50: 998–1006, 1996

7. Matteucci MC, Wuhl E, Picca S, Mastrostefano A, Rinelli G,
Romano C, Rizzoni G, Mehls O, de Simone G, Schaefer F;
ESCAPE Trial Group: Left ventricular geometry in chil-
dren with mild to moderate chronic renal insufficiency.
J Am Soc Nephrol 17: 218–226, 2006

8. Dahan M, Siohan P, Viron B, Michel C, Paillole C, Gourgon
R, Mignon F: Relationship between left ventricular hyper-

trophy, myocardial contractility, and load conditions in
hemodialysis patients: An echocardiographic study. Am J
Kidney Dis 30: 780–785, 1997

9. Palcoux JB, Palcoux MC, Jouan JP, Gourgand JM, Cassa-
gnes J, Malpuech G: Echocardiographic pattern in infants
and children with chronic renal failure. Int J Pediatr Nephrol
3: 311–314, 1982

10. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury
PR, Daniels SR: Left ventricular mass and systolic perfor-
mance in pediatric patients with chronic renal failure. Cir-
culation 107: 864–868, 2003

11. de Simone G, Devereux RB, Celentano A, Roman MJ: Left
ventricular chamber and wall mechanics in the presence of
concentric geometry. J Hypertens 17: 1001–1006, 1999

12. de Simone G, Devereux RB, Roman MJ, Ganau A, Saba PS,
Alderman MH, Laragh JH: Assessment of left ventricular
function by the midwall fractional shortening/end-systolic
stress relation in human hypertension. J Am Coll Cardiol 23:
1444–1451, 1994

13. Sahn DJ, DeMaria A, Kisslo J, Weyman A: Recommenda-
tions regarding quantitation in M-mode echocardiogra-
phy: Results of a survey of echocardiographic measure-
ments. Circulation 58: 1072–1083, 1978

14. de Simone G, Mureddu G, Greco R, Scalfi L, Del Puente
AE, Franzese A, Contaldo F, Devereux RB: Relations of left
ventricular geometry and function to body composition in
children with high casual blood pressure. Hypertension 30:
377–382, 1997

15. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux
RB, Feigenbaum H, Gutgesell H, Reichek N, Sahn D,
Schnittger I, Silverman NH, Tajik AJ: Recommendations
for quantitation of the left ventricle by two-dimensional
echocardiography. American Society of Echocardiography
Committee on Standards, Subcommittee on Quantitation
of Two-Dimensional Echocardiograms. J Am Soc Echocar-
diogr 2: 358–367, 1989

16. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E,
Sachs I, Reichek N: Echocardiographic assessment of left
ventricular hypertrophy: Comparison to necropsy find-
ings. Am J Cardiol 57: 450–458, 1986

17. Daniels SR, Meyer RA, Liang YC, Bove KE: Echocardio-
graphically determined left ventricular mass index in nor-
mal children, adolescents and young adults. J Am Coll
Cardiol 12: 703–708, 1988

18. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman
MJ, de Divitiis O, Alderman MH: Left ventricular mass and
body size in normotensive children and adults: Assess-
ment of allometric relations and impact of overweight.
J Am Coll Cardiol 20: 1251–1260, 1992

19. de Simone G, Daniels SR, Kimball TR, Roman MJ, Romano
C, Chinali M, Galderisi M, Devereux RB: Evaluation of
concentric left ventricular geometry in humans: Evidence
for age-related systematic underestimation. Hypertension
45: 64–68, 2005

20. Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch
WH: Left ventricular midwall mechanics in systemic arte-
rial hypertension. Myocardial function is depressed in
pressure-overload hypertrophy. Circulation 83: 1676–1684,
1991

21. de Simone G, Kimball TR, Roman MJ, Daniels SR, Celen-
tano A, Witt SA, Devereux RB: Relation of left ventricular

J Am Soc Nephrol 18: 593–598, 2007 Systolic Function in Children with CRI 597



chamber and midwall function to age in normal children,
adolescents and adults. Ital Heart J 1: 295–300, 2000

22. Mureddu GF, Pasanisi F, Palmieri V, Celentano A, Con-
taldo F, de Simone G: Appropriate or inappropriate left
ventricular mass in the presence or absence of prognosti-
cally adverse left ventricular hypertrophy. J Hypertens 19:
1113–1119, 2001

23. Colan A, Sanders SP, Ingelfinger JR, Harmon W: Left ven-
tricular mechanics and contractile state in children and
adolescents with end-stage renal disease: Effect of dialysis
and renal transplantation. J Am Coll Cardiol 10: 1085–1094,
1987

24. Valsangiacomo E, Neuhaus TJ, Goetschel P, Bauersfeld U:

Cardiac rhythm disturbances in children on hemodialysis.
Pediatr Nephrol 17: 837–841, 2002

25. Perfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC,
Barre PE: Outcome and risk factors for left ventricular
disorders in chronic uremia. Nephrol Dial Transplant 11:
1328–1331, 1996

26. de Simone G: Left ventricular geometry and hypotension
in end-stage renal disease: A mechanical perspective. J Am
Soc Nephrol 14: 2421–2427, 2003

27. de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale
PN, Laragh JH: Midwall left ventricular mechanics. An
independent predictor of cardiovascular risk in arterial
hypertension. Circulation 93: 259–265, 1996

Access to UpToDate on-line is available for additional clinical information
at http://www.jasn.org/

598 Journal of the American Society of Nephrology J Am Soc Nephrol 18: 593–598, 2007


