3,698 research outputs found

    Inertial waves in a rectangular parallelepiped

    Get PDF
    A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane the two dimensional solution is constructed via superposition of 'inertial' analogs of surface Poincar\'{e} and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincar\'{e} waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor (1921), Rao (1966) and also, for inertial waves, by Maas (2003) upon truncation of an infinite matrix. The present approach enhances the currently available, structurally concise modal solution introduced by Maas (2003). In contrast to Maas' approach, our solution does not have any convergence issues in the interior and does not suffer from Gibbs phenomenon at the boundaries. Additionally, an alternative finite element method is used to contrast these two semi-analytical solutions with a purely numerical one. The main differences are discussed for a particular example and one eigenfrequency

    Describing gluons at zero and finite temperature

    Full text link
    Any description of gluons requires a well-defined gauge. This is complicated non-perturbatively by Gribov copies. A possible method-independent gauge definition to resolve this problem is presented and afterwards used to study the properties of gluons at any temperature. It is found that only chromo-electric properties reflect the phase transition. From these the gauge-invariant phase transition temperature is determined for SU(2) and SU(3) Yang-Mills theory independently.Comment: 3 pages, 1 figure. Talk given at "The 5-th International Conference on Quarks and Nuclear Physics", Beijing, China, and at "Quarks, Hadrons, and the Phase Diagram of QCD", St. Goar, Germany, both September 2009. Submitted to the QNP proceeding

    Prediction of disease progression, treatment response and dropout in chronic obstructive pulmonary disease (COPD).

    Get PDF
    Drug development in chronic obstructive pulmonary disease (COPD) has been characterised by unacceptably high failure rates. In addition to the poor sensitivity in forced expiratory volume in one second (FEV1), numerous causes are known to contribute to this phenomenon, which can be clustered into drug-, disease- and design-related factors. Here we present a model-based approach to describe disease progression, treatment response and dropout in clinical trials with COPD patients

    Hamiltonian discontinuous Galerkin FEM for linear, stratified (in)compressible Euler equations: internal gravity waves

    Get PDF
    The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and energy. This required (i) the discretization of the Hamiltonian structure using alternating flux functions and symplectic time integration, (ii) the discretization of a divergence-free velocity field using Dirac's theory of constraints and (iii) the handling of large-scale computational demands due to the 3-dimensional nature of internal gravity waves and, in confined, symmetry-breaking fluid domains, possibly its narrow zones of attraction

    Damage-induced phosphorylation of Sld3 is important to block late origin firing.

    Get PDF
    Origins of replication are activated throughout the S phase of the cell cycle such that some origins fire early and others fire late to ensure that each chromosome is completely replicated in a timely fashion. However, in response to DNA damage or replication fork stalling, eukaryotic cells block activation of unfired origins. Human cells derived from patients with ataxia telangiectasia are deficient in this process due to the lack of a functional ataxia telangiectasia mutated (ATM) kinase and elicit radioresistant DNA synthesis after γ-irradiation(2). This effect is conserved in budding yeast, as yeast cells lacking the related kinase Mec1 (ATM and Rad3-related (ATR in humans)) also fail to inhibit DNA synthesis in the presence of DNA damage. This intra-S-phase checkpoint actively regulates DNA synthesis by inhibiting the firing of late replicating origins, and this inhibition requires both Mec1 and the downstream checkpoint kinase Rad53 (Chk2 in humans). However, the Rad53 substrate(s) whose phosphorylation is required to mediate this function has remained unknown. Here we show that the replication initiation protein Sld3 is phosphorylated by Rad53, and that this phosphorylation, along with phosphorylation of the Cdc7 kinase regulatory subunit Dbf4, blocks late origin firing in Saccharomyces cerevisiae. Upon exposure to DNA-damaging agents, cells expressing non-phosphorylatable alleles of SLD3 and DBF4 (SLD3-m25 and dbf4-m25, respectively) proceed through the S phase faster than wild-type cells by inappropriately firing late origins of replication. SLD3-m25 dbf4-m25 cells grow poorly in the presence of the replication inhibitor hydroxyurea and accumulate multiple Rad52 foci. Moreover, SLD3-m25 dbf4-m25 cells are delayed in recovering from transient blocks to replication and subsequently arrest at the DNA damage checkpoint. These data indicate that the intra-S-phase checkpoint functions to block late origin firing in adverse conditions to prevent genomic instability and maximize cell survival

    Nontrivial ghost-gluon vertex and the match of RGZ, DSE and lattice Yang-Mills propagators

    Full text link
    Either by solving the ghost propagator DSE or through a one-loop computation in the RGZ (Refined Gribov-Zwanziger) formalism, we show that a non-trivial ghost-gluon vertex is anyhow required to obtain a ghost propagator prediction compatible with the available corresponding lattice data in the SU(3) case. For the necessary gluon propagator input, we present RGZ tree level fits which account well for the gluon lattice data. Interestingly, this propagator can be rewritten in terms of a running gluon mass. A comparison of both DSE and RGZ results for the ghost propagator is furthermore provided. We also briefly discuss the connection between the RGZ and the OPE d=2d=2 gluon condensate.Comment: 21 pages, 3 figure

    Zoologie: Medusen

    Get PDF

    From gigawatt to multi-gigawatt wind farms: wake effects, energy budgets and inertial gravity waves investigated by large-eddy simulations

    Get PDF
    The size of newly installed offshore wind farms increases rapidly. Planned offshore wind farm clusters have a rated capacity of several gigawatts and a length of up to 100 km. The flow through and around wind farms of this scale can be significantly different than the flow through and around smaller wind farms on the sub-gigawatt scale. A good understanding of the involved flow physics is vital for accurately predicting the wind farm power output as well as predicting the meteorological conditions in the wind farm wake. To date there is no study that directly compares small wind farms (sub-gigawatt) with large wind farms (super-gigawatt) in terms of flow effects or power output. The aim of this study is to fill this gap by providing this direct comparison by performing large-eddy simulations of a small wind farm (13 km length) and a large wind farm (90 km length) in a convective boundary layer, which is the most common boundary layer type in the North Sea. The results show that there are significant differences in the flow field and the energy budgets of the small and large wind farm. The large wind farm triggers an inertial wave with a wind direction amplitude of approximately 10∘ and a wind speed amplitude of more than 1 m s−1. In a certain region in the far wake of a large wind farm the wind speed is greater than far upstream of the wind farm, which can be beneficial for a downstream located wind farm. The inertial wave also exists for the small wind farm, but the amplitudes are approximately 4 times weaker and thus may be hardly observable in real wind farm flows that are more heterogeneous. Regarding turbulence intensity, the wake of the large wind farm has the same length as the wake of the small wind farm and is only a few kilometers long. Both wind farms trigger inertial gravity waves in the free atmosphere, whereas the amplitude is approximately twice as large for the large wind farm. The inertial gravity waves induce streamwise pressure gradients inside the boundary layer, affecting the energy budgets of the wind farms. The most dominant energy source of the small wind farm is the horizontal advection of kinetic energy, but for the large wind farm the vertical turbulent flux of kinetic energy is 5 times greater than the horizontal advection of kinetic energy. The energy input by the gravity-wave-induced pressure gradient is greater for the small wind farm because the pressure gradient is greater. For the large wind farm, the energy input by the geostrophic forcing (synoptic-scale pressure gradient) is significantly enhanced by the wind direction change that is related to the inertial oscillation. For both wind farms approximately 75 % of the total available energy is extracted by the wind turbines and 25 % is dissipated.</p

    Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism

    Get PDF
    Three decades of work on the quantum field equations of pure Yang-Mills theory have distilled two families of solutions in Landau gauge. Both coincide for high (Euclidean) momentum with known perturbation theory, and both predict an infrared suppressed transverse gluon propagator, but whereas the solution known as "scaling" features an infrared power law for the gluon and ghost propagators, the "massive" solution rather describes the gluon as a vector boson that features a finite Debye screening mass. In this work we examine the gauge dependence of these solutions by adopting stochastic quantization. What we find, in four dimensions and in a rainbow approximation, is that stochastic quantization supports both solutions in Landau gauge but the scaling solution abruptly disappears when the parameter controlling the drift force is separated from zero (soft gauge-fixing), recovering only the perturbative propagators; the massive solution seems to survive the extension outside Landau gauge. These results are consistent with the scaling solution being related to the existence of a Gribov horizon, with the massive one being more general. We also examine the effective action in Faddeev-Popov quantization that generates the rainbow and we find, for a bare vertex approximation, that the the massive-type solutions minimise the quantum effective action.Comment: 13 pages, 7 figures. Change of title to reflect version accepted for publicatio

    Sharing Political and Religious Information on Facebook: Coworker Reactions

    Get PDF
    This study is the first to examine links between social media activity and workplace relationship outcomes. The study examines employees’ perceptions of coworkers who share political and religious information on Facebook. Authors piloted a measure of political and religious information sharing on Facebook (the PRISM-F). Results indicate that employees who frequently post political information on Facebook are less liked by their coworkers. In turn, this reduced liking relates to being less trusted, receiving less help, and receiving lower job performance ratings from coworkers. Religious information sharing was unrelated to these outcomes. Political and religious belief similarity did not moderate the effects of information sharing. This study offers evidence that although engaging in political discourse on Facebook can be tempting, it is associated with potentially negative workplace consequences. Furthermore, organizations may be well served by developing social media policies that caution employees about the potentially negative effects of sharing political information on Facebook.
    corecore