787 research outputs found

    Delta robot motion control

    Get PDF
    Abstract. The aim of this thesis is to generate a functional motion control to a delta robot. The motion control is based on solving the inverse kinematics problem of the delta robot. This solution is then used to form the control logic of the robot. In addition, this thesis also introduces forward kinematics solution models and, the most common industrial robots and their features. Applications of industrial robots, as well as the industries that utilize them the most are also examined. This thesis introduces a self-made delta robot and its motion control design. The functionality of motion control is studied by measuring the positioning accuracy as well as the repeatability of the self-made delta robot in the xy-plane. Accuracy measurements are performed using a separate measuring device. A small-scale comparison between the positioning accuracy of a self-made and a commercial delta robot is implemented to find out how closely can the performance of a commercial delta robot be reproduced with a self-made delta robot. The results of this thesis indicate that the inverse kinematics model of the delta robot as well as the motion control actually work. The results demonstrate that the performance of the self-made delta robot is at a good level and that further development is worthwhile. There was not enough measurement data to perform a proper comparison between the self-made and the commercial delta robot. However, despite the narrow sampling, it is assumed that the positioning accuracy of the self-made delta robot is not yet at the same level as that of the commercial product. The accuracy of the self-made delta robot presented in this thesis can be improved by developing the feeding of the robot’s drive commands. The materials used in the construction of the robot as well as the quality of the joints also affect the accuracy. The inverse kinematics model of the delta robot presented in this thesis can be easily scaled to different sized delta robots depending on the application. Motion control can be utilized in the control of delta robots implemented with a similar mechanical structure.Delta-robotin liikkeenohjaus. Tiivistelmä. Tämän työn tarkoituksena on suunnitella delta-robotille toimiva liikkeenohjaus. Liikkeenohjauksen rakentaminen perustuu delta-robotin käänteiskinematiikan ratkaisemiseen. Käänteiskinematiikan ratkaisua hyödynnetään ohjauslogiikan toteutuksessa. Työssä tutustutaan myös suorankinematiikan ratkaisumalleihin, sekä esitellään yleisimpiä teollisuusrobotteja ja niiden ominaisuuksia. Työssä tarkastellaan myös teollisuusrobottien käyttökohteita, sekä niitä eniten hyödyntävät teollisuudenalat. Työssä tutustutaan omavalmisteiseen delta-robottiin ja sen liikkeenohjauksen suunnitteluun. Liikkeenohjauksen toimivuutta tutkitaan mittaamalla omavalmisteisen delta-robotin paikoitustarkkuus, sekä toistotarkkuus xy-tasossa. Tarkkuusmittaukset toteutetaan käyttämällä erillistä mittalaitetta. Työssä pyritään myös selvittämään kuinka lähelle kaupallisen delta-robotin suorituskykyä voidaan päästä omavalmisteisella delta-robotilla. Työssä toteutetaan pienimuotoinen vertailu omavalmisteisen ja kaupallisen delta-robotin paikoitustarkkuuden välillä. Työn tulokset osoittavat, että delta-robotin käänteiskinematiikan malli, sekä liikkeenohjaus toimivat. Tuloksista selviää, että omavalmisteisen delta-robotin suorituskyky on hyvällä tasolla ja sen kehittämistä kannattaa jatkaa. Omavalmisteisen ja kaupallisen delta-robotin kunnolliseen vertailuun ei saatu riittävästi dataa. Suppeasta otannasta huolimatta on kuitenkin oletettavaa, että omavalmisteisen delta-robotin paikoitustarkkuus ei vielä yllä samalle tasolle kaupallisen tuotteen kanssa. Työssä esitellyn omavalmisteisen delta-robotin tarkkuutta saadaan parannettua kehittämällä robotin ajokomentojen syöttämistä. Myös robotin rakenteessa käytetyt materiaalit, sekä nivelten laadukkuus vaikuttavat tarkkuuteen. Työssä esitetty delta-robotin käänteiskinematiikan malli on helposti skaalattavissa myös erikokoisiin delta-robotteihin käyttökohteesta riippuen. Liikkeenohjausta voidaan hyödyntää vastaavalla mekaanisella rakenteella toteutettujen delta-robottien ohjauksessa

    Dissecting molecular phenotypes through FACS-based pooled CRISPR screens

    Get PDF
    Pooled CRISPR screens are emerging as a powerful tool to dissect regulatory networks, by assessing how a protein responds to genetic perturbations in a highly multiplexed manner. A large number of genes are perturbed in a cell population through genomic integration of one single-guide RNA (sgRNA) per cell. A subset of cells with the phenotype of interest can then be enriched through fluorescence-activated cell sorting (FACS). SgRNAs with altered abundance after phenotypic enrichment allow identification of genes that either promote or attenuate the investigated phenotype. Here we provide detailed guidelines on how to design and execute a pooled CRISPR screen to investigate molecular phenotypes. We describe how to generate a custom sgRNA library and how to perform a FACS-based screen using readouts such as intracellular antibody staining or Flow-FISH to assess phosphorylation levels or RNA abundance. Through the variety of available perturbation systems and readout options many different molecular and cellular phenotypes can now be tackled with pooled CRISPR screens

    A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction

    Full text link
    The acquisition of Magnetic Resonance Imaging (MRI) is inherently slow. Inspired by recent advances in deep learning, we propose a framework for reconstructing MR images from undersampled data using a deep cascade of convolutional neural networks to accelerate the data acquisition process. We show that for Cartesian undersampling of 2D cardiac MR images, the proposed method outperforms the state-of-the-art compressed sensing approaches, such as dictionary learning-based MRI (DLMRI) reconstruction, in terms of reconstruction error, perceptual quality and reconstruction speed for both 3-fold and 6-fold undersampling. Compared to DLMRI, the error produced by the method proposed is approximately twice as small, allowing to preserve anatomical structures more faithfully. Using our method, each image can be reconstructed in 23 ms, which is fast enough to enable real-time applications

    Avance en el diagnóstico de enfermedades neurológicas : una señal de alerta temprana

    Get PDF
    Fil: Serra, Jorge A. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina.Fil: Domínguez, Raúl O. Universidad de Buenos Aires, Facultad de Medicina; Argentina.Fil: Lustig, Eugenia S. de. Universidad de Buenos Aires. Instituto Roffo; Argentina.Fil: Marschoff, Enrique R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.A las graves consecuencias que ocasionan para las personas que las padecen, algunas enfermedades\nneurológicas, como el mal de Alzheimer, presentan además otro inconveniente: su detección resulta\nmuy dificultosa y se basa fundamentalmente en la evaluación médica. Luego de años de trabajo, un\ngrupo multidisciplinario de investigadores de la UBA ha logrado un promisorio avance que permitiría\ndiagnosticar y diferenciar entre sí a este tipo de dolencias, a través de un análisis de sangre que\nmediría el estrés oxidativo de los posibles afectados

    Common peroneal nerve palsy complicating knee dislocation and bicruciate ligaments tears

    Get PDF
    SummaryIntroductionThe occurrence rate of common peroneal nerve (CPN) palsy associated with knee dislocation or bicruciate ligament injury ranges from 10 to 40%. The present study sought first to describe the anatomic lesions encountered and their associated prognoses and second to recommend adequate treatment strategy based on a prospective multicenter observational series of knee ligament trauma cases.Material and methodsTwelve out of 67 knees treated for dislocation or bicruciate lesion presented associated CPN palsy: two females, 10 males; mean age, 32 years. Four sports injuries, three traffic accidents and five other etiologies led to seven complete dislocations and five bicruciate ruptures. Four cases involved associated popliteal artery laceration ischemia; one of the dislocations was open. Paralysis was total in eight cases and partial in four. There were two complete ruptures, three contusions with CPN in continuity stretch lesions and three macroscopically normal aspects.ResultsAt a minimum 1 year's follow-up, regardless of the initial surgical technique performed, recovery was complete in six cases, partial (in terms of motor function) in one and absent in five. Without specific CPN surgery, spontaneous recovery was partial in one case, complete in two and absent in none. Following simple emergency or secondary neurolysis, remission was total in four cases and absent in one. Three nerve grafts were all associated with non-recovery.DiscussionThe present results agree with literature findings. Palsy rates varied with trauma circumstances and departmental recruitment. Neurologic impairment was commensurate to ligamentary damages. The anatomic status of the CPN, subjected to violent traction by dislocation, was the most significant prognostic factor for neurologic recovery. In about 25% of dislocations, contusion-elongation over several centimeters was associated with as poor a prognosis as total rupture. CPN neurolysis is recommended when early clinical and EMG recovery fails to progress and/or in case of lateral ligamentary reconstruction. Possible peripheral nerve impairment needs to be included in the overall functional assessment of treatment for severe ligaments injuries and knee dislocation.Level of evidenceLevel IV, prospective study

    CMB Anisotropy of Spherical Spaces

    Full text link
    The first-year WMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient of S^3 by a group Gamma of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Gamma corresponding to homogeneous universes. The CMB angular power spectrum and the temperature correlation function are computed for the homogeneous spaces as a function of the total energy density parameter Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data. We find that out of the infinitely many homogeneous spaces only the three corresponding to the binary dihedral group T*, the binary octahedral group O*, and the binary icosahedral group I* are in agreement with the WMAP observations. Furthermore, if Omega_tot is restricted to the interval [1.00, 1.04], the space described by T* is excluded since it requires a value of Omega_tot which is probably too large being in the range [1.06, 1.07]. We thus conclude that there remain only the two homogeneous spherical spaces S^3/O* and S^3/I* with Omega_tot of about 1.038 and 1.018, respectively, as possible topologies for our Universe.Comment: A version with high resolution sky maps can be obtained at http://www.physik.uni-ulm.de/theo/qc

    Synthesis from Recursive-Components Libraries

    Full text link
    Synthesis is the automatic construction of a system from its specification. In classical synthesis algorithms it is always assumed that the system is "constructed from scratch" rather than composed from reusable components. This, of course, rarely happens in real life. In real life, almost every non-trivial commercial software system relies heavily on using libraries of reusable components. Furthermore, other contexts, such as web-service orchestration, can be modeled as synthesis of a system from a library of components. In 2009 we introduced LTL synthesis from libraries of reusable components. Here, we extend the work and study synthesis from component libraries with "call and return"' control flow structure. Such control-flow structure is very common in software systems. We define the problem of Nested-Words Temporal Logic (NWTL) synthesis from recursive component libraries, where NWTL is a specification formalism, richer than LTL, that is suitable for "call and return" computations. We solve the problem, providing a synthesis algorithm, and show the problem is 2EXPTIME-complete, as standard synthesis.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing

    Get PDF
    Publisher version: http://www.nature.com/embor/journal/v11/n10/full/embor2010135.htmlDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEPhysical cues, such as extracellular matrix stiffness, direct cell differentiation and support tissue-specific function. Perturbation of these cues underlies diverse pathologies, including osteoarthritis, cardiovascular disease and cancer. However, the molecular mechanisms that establish tissue-specific material properties and link them to healthy tissue function are unknown. We show that Runx2, a key lineage-specific transcription factor, regulates the material properties of bone matrix through the same transforming growth factor-beta (TGFbeta)-responsive pathway that controls osteoblast differentiation. Deregulated TGFbeta or Runx2 function compromises the distinctly hard cochlear bone matrix and causes hearing loss, as seen in human cleidocranial dysplasia. In Runx2(+/-) mice, inhibition of TGFbeta signalling rescues both the material properties of the defective matrix, and hearing. This study elucidates the unknown cause of hearing loss in cleidocranial dysplasia, and demonstrates that a molecular pathway controlling cell differentiation also defines material properties of extracellular matrix. Furthermore, our results suggest that the careful regulation of these properties is essential for healthy tissue functio

    Identification of rare alleles and their carriers using compressed se(que)nsing

    Get PDF
    Identification of rare variants by resequencing is important both for detecting novel variations and for screening individuals for known disease alleles. New technologies enable low-cost resequencing of target regions, although it is still prohibitive to test more than a few individuals. We propose a novel pooling design that enables the recovery of novel or known rare alleles and their carriers in groups of individuals. The method is based on a Compressed Sensing (CS) approach, which is general, simple and efficient. CS allows the use of generic algorithmic tools for simultaneous identification of multiple variants and their carriers. We model the experimental procedure and show via computer simulations that it enables the recovery of rare alleles and their carriers in larger groups than were possible before. Our approach can also be combined with barcoding techniques to provide a feasible solution based on current resequencing costs. For example, when targeting a small enough genomic region (∼100 bp) and using only ∼10 sequencing lanes and ∼10 distinct barcodes per lane, one recovers the identity of 4 rare allele carriers out of a population of over 4000 individuals. We demonstrate the performance of our approach over several publicly available experimental data sets
    corecore