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ABSTRACT 

Delta robot motion control 

Olli Lustig 

University of Oulu, Degree Programme of Mechanical Engineering 

Master’s thesis 2020, 68 p. + 3 p. Appendixes  

Supervisor at the university: Toni Liedes 

 

The aim of this thesis is to generate a functional motion control to a delta robot. The 

motion control is based on solving the inverse kinematics problem of the delta robot. This 

solution is then used to form the control logic of the robot. In addition, this thesis also 

introduces forward kinematics solution models and, the most common industrial robots 

and their features. Applications of industrial robots, as well as the industries that utilize 

them the most are also examined.  

This thesis introduces a self-made delta robot and its motion control design. The 

functionality of motion control is studied by measuring the positioning accuracy as well 

as the repeatability of the self-made delta robot in the xy-plane. Accuracy measurements 

are performed using a separate measuring device. A small-scale comparison between the 

positioning accuracy of a self-made and a commercial delta robot is implemented to find 

out how closely can the performance of a commercial delta robot be reproduced with a 

self-made delta robot. 

The results of this thesis indicate that the inverse kinematics model of the delta robot as 

well as the motion control actually work. The results demonstrate that the performance 

of the self-made delta robot is at a good level and that further development is worthwhile. 

There was not enough measurement data to perform a proper comparison between the 

self-made and the commercial delta robot. However, despite the narrow sampling, it is 

assumed that the positioning accuracy of the self-made delta robot is not yet at the same 

level as that of the commercial product. 



 

The accuracy of the self-made delta robot presented in this thesis can be improved by 

developing the feeding of the robot's drive commands. The materials used in the 

construction of the robot as well as the quality of the joints also affect the accuracy. 

The inverse kinematics model of the delta robot presented in this thesis can be easily 

scaled to different sized delta robots depending on the application. Motion control can be 

utilized in the control of delta robots implemented with a similar mechanical structure.  

Keywords: Delta robot, motion control 



 

TIIVISTELMÄ 

Delta-robotin liikkeenohjaus 

Olli Lustig 

Oulun yliopisto, Konetekniikan koulutusohjelma 

Diplomityö  2020, 68 s. + 3 s. liitteitä 

Työn ohjaaja yliopistolla: Toni Liedes 

 

Tämän työn tarkoituksena on suunnitella delta-robotille toimiva liikkeenohjaus. 

Liikkeenohjauksen rakentaminen perustuu delta-robotin käänteiskinematiikan 

ratkaisemiseen. Käänteiskinematiikan ratkaisua hyödynnetään ohjauslogiikan 

toteutuksessa. Työssä tutustutaan myös suorankinematiikan ratkaisumalleihin, sekä 

esitellään yleisimpiä teollisuusrobotteja ja niiden ominaisuuksia. Työssä tarkastellaan 

myös teollisuusrobottien käyttökohteita, sekä niitä eniten hyödyntävät teollisuudenalat. 

Työssä tutustutaan omavalmisteiseen delta-robottiin ja sen liikkeenohjauksen 

suunnitteluun. Liikkeenohjauksen toimivuutta tutkitaan mittaamalla omavalmisteisen 

delta-robotin paikoitustarkkuus, sekä toistotarkkuus xy-tasossa. Tarkkuusmittaukset 

toteutetaan käyttämällä erillistä mittalaitetta. Työssä pyritään myös selvittämään kuinka 

lähelle kaupallisen delta-robotin suorituskykyä voidaan päästä omavalmisteisella 

delta-robotilla. Työssä toteutetaan pienimuotoinen vertailu omavalmisteisen ja 

kaupallisen delta-robotin paikoitustarkkuuden välillä. 

Työn tulokset osoittavat, että delta-robotin käänteiskinematiikan malli, sekä 

liikkeenohjaus toimivat. Tuloksista selviää, että omavalmisteisen delta-robotin 

suorituskyky on hyvällä tasolla ja sen kehittämistä kannattaa jatkaa. Omavalmisteisen ja 

kaupallisen delta-robotin kunnolliseen vertailuun ei saatu riittävästi dataa. Suppeasta 

otannasta huolimatta on kuitenkin oletettavaa, että omavalmisteisen delta-robotin 

paikoitustarkkuus ei vielä yllä samalle tasolle kaupallisen tuotteen kanssa.  

Työssä esitellyn omavalmisteisen delta-robotin tarkkuutta saadaan parannettua 

kehittämällä robotin ajokomentojen syöttämistä. Myös robotin rakenteessa käytetyt 

materiaalit, sekä nivelten laadukkuus vaikuttavat tarkkuuteen.  



 

Työssä esitetty delta-robotin käänteiskinematiikan malli on helposti skaalattavissa myös 

erikokoisiin delta-robotteihin käyttökohteesta riippuen. Liikkeenohjausta voidaan 

hyödyntää vastaavalla mekaanisella rakenteella toteutettujen delta-robottien ohjauksessa.   

Avainsanat: Delta-robotti, liikkeenohjaus 
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SYMBOLS AND ACRONYMS 

Ap Positioning accuracy 

ai-1 Transition about �̂�i-1-axis  

c Cosine 

di Transition about axis �̂� 

e Euler’s number 

fi Number of DOF provided by the ith joint 

J Number of joints 

𝑙 ̅ Mean value of positioning repeatability 

𝑙𝑖  ith positioning repeatability 

m Degrees of freedom of a rigid body 

N Number of links 

𝑛  Number of measured points 

𝑅𝑃  Positioning repeatability 

𝑆  Screw axis 

s Sine 

𝑆𝑙  Standard deviation for l 

𝑇𝑛
0 Homogeneous transformation matrix from n-frame to 0-frame 

�̅� Mean of measured positions in x-direction 

�̂� Rotation axis x 

xc Programmed target position in x-direction 

𝑥𝑖  ith measured x position 

�̅� Mean of measured positions in y-direction 

𝑦𝑖  ith measured y position 

yc Programmed target position in y-direction 

�̂� Rotation axis z 

  

𝛼𝑖  Angle variable in delta robot kinematics 

𝛼i-1 Rotation angle in DH-parameters 

𝛾𝑖  Angle variable in delta robot kinematics 

𝜃𝑖  Layout angle of the ith linear screw rail 

ϕ Rotation about the screw axis in degrees 

ϕi  Rotation about �̂�i-axis 



 

 

    

AR Augmented Reality 

CNC  Computerized Numerical Control 

DH Denavit-Hartenberg 

DOF Degrees Of Freedom 

FSR Force Sensing Resistor 

IP Internet Protocol 

NC Numerical Control 

NCI Numerical Control Interpolation 

OLP Off-Line Programming 

PC Personal Computer 

PLC Programmable Logic Controller 

PoE Product of Exponentials 

SCARA  Selective Compliance Robotic Assembly Arm /Articulated Robot Arm 

SME Small to Medium sized Enterprise 

ST Structured Text 

TPM Translational Parallel Manipulator 

VR Virtual Reality 
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1 INTRODUCTION 

In this thesis the motion control of a delta robot is studied. The base of this thesis is in 

solving the inverse kinematics model of the delta robot. After the inverse kinematics 

model is solved it is shown how it can be implemented in the control logic of the delta 

robot. This thesis demostrate how the control logic of the delta robot can be implemented 

by using Beckhoff´s programmable logic controller (PLC). 

The delta robot is an industrial robot, which was invented in the 80´s by Reymond Clavel 

and his research team. The invention took place in the Swiss Federal Institute of 

Technology in Lausanne. The basic idea of the delta robot is to create three translational 

degrees of freedom using parallelograms. The delta robot is designed for fast pick and 

place duties. The delta robot has an ability of up to 12 G acceleration in industrial 

applications. Because of this the delta robot is the best choice for pick and place duties 

(Bonev, 2001).  

The aim of this study is to find the inverse kinematics model of the delta robot and to 

form a PLC program based on it. Another target of this thesis is to examine the positioning 

accuracy and repeatability of the delta robot. The positioning accuracy and repeatability 

are verified by using a grid encoder. The grid encoder is a testing device for machine tool 

inspection. The delta robot is programmed to make interpolated path movements from 

point to point. These examinations are carried out with a case study delta robot, which 

was designed and manufactured earlier by the author of this thesis, Mika Muurinen and 

Henri Remes during an internship period at JOT Automation Oy.  

The positioning accuracy of ABB’s Flexpicker IRB 360-1/1130 delta robot is also 

measured to form a baseline for comparison purposes. It is expected that the commercial 

delta robot is more accurate and, thus, will yield better results. It is, however, interesting 

to see how close the results of the self-made delta robot can get to those of the commercial 

robot. Results comparing the efficiency of a commercial delta robot and a self-made delta 

robot are presented later in this thesis.  

Chapters two to four are based on a literature review. Chapter two includes discussion of 

the most common industrial robots and their features on a general level. This is followed 
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by a more theoretical chapter three about the kinematics of serial structured mechanisms. 

Chapter four focuses on delta robots. Their different mechanical structures as well as the 

kinematics of the delta robot are discussed. In addition, the solution to the inverse 

kinematics problem of a delta robot is shown.  

Chapters five to seven focus on the case study delta robot. This case study begins by 

introducing the case study delta robot to the reader of this thesis. Moreover the control 

logic of the case study delta robot is discussed. After this the performance of the case 

study delta robot is verified using methods shown in chapter six. Chapter seven introduces 

the results of the positioning accuracy and repeatability of the case study delta robot. The 

measurement results are then analyzed and discussed. Lastly a small-scale comparison is 

made between the case study delta robot and ABB’s Flexpicker.  
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2 INDUSTRIAL ROBOTS 

In this chapter the definition of an industrial robot and the most common types are 

introduced. Moreover, the industrial robots markets are reviewed. After this the degrees 

of freedom of a robot are discussed before a discussion about accuracy and repeatability. 

At the end of this chapter the different programming methods for industrial robots are 

compared.   

2.1 Definition 

ISO 8373:2012 standard defines the industrial robot as an automatically controlled and 

reprogrammable device. According to the definition an industrial robot is a multipurpose 

manipulator that can be programmed in three or more axes. An industrial robot can be 

either fixed in place or fully mobile and it operates in industrial automation applications. 

According to ISO 8373:2012 industrial robot includes the manipulator including 

actuators. Also a controller including a teach pendant is included for programming and 

controlling purposes (ISO, 2012). 

The most popular industrial robot types are articulated robot, Cartesian robot, delta robot 

and SCARA robot. These robots can be placed under two main topics, which are serial 

and parallel robots. The two most popular serial structured robots are the articulated robot 

and the SCARA robot (Selective Compliance Robotic Assembly Arm /Articulated Robot 

Arm). Articulated robots can be used in various tasks such as arc welding (Doan and Lin 

2017), machining (Chen and Dong 2013) or assembly duties (Ranz et al. 2017). 

Articulated robots use only rotary joints, which makes it possible to seal the joints 

properly. Because of this ability, articulated robots are perhaps the best choice to work in 

such environments where it is required that the robot does not pollute the environment 

(Pan et al. 2017)  or even under water (Barbieri et al. 2018). Serial structured robots like 

articulated robots have often a good working envelope to footprint ratio. Articulated 

robots can also be mounted to a prismatic axis which enlarges the workspace even more. 

Articulated robots can also be mounted to the sealing or on the wall, which reduces the 

footprint even more or completely depending on the case.  
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One disadvantage of serial structured robots is that their stiffness reduces when more axes 

are added to the structure, which causes more inertia. Also the tolerance error in the serial 

robot link manufacturing adds up the total error in the end effector. The SCARA robot is 

mostly used in quick assembly or material handling. It has a cylindrical work space.  

The second main group in industrial robots are the parallel structured robots. The parallel 

structured robot has at least one closed loop in their kinematic chain. Perhaps the most 

known parallel robots are the delta robot and the Cartesian robot. The main disadvantage 

in parallel structured robots is that they suffer from reduced working envelope to footprint 

ratio. Because of the closed loop chain parallel robots cannot achieve as big a working 

space as same sized serial structured robots. The biggest advantage in parallel structured 

robots is that their structure has high stiffness. Also the tolerance errors in parallel robots 

limbs manufacturing do not add up like in serial robots. The delta robots are mostly used 

in pick and place tasks and their advantages lie in high speed and acceleration.  

The Cartesian robot has a rectangular shaped working envelope and is often used in pick 

and place, material handling and assembly duties. Cartesian robot has linear actuators for 

every three Cartesian direction x, y and z. The control logic in Cartesian robots is quite 

simple because the actuator moves in the same direction with the end effector.   

Another popular parallel structured robot is the Stewart Platform, which is often referred 

to as the Hexapod. Stewart Platform has 6 degrees of freedom so it can rotate and translate 

about all three axis. This ability makes it possible to use the Stewart platform in flight 

simulators (Dongsu and Hongbin 2007) , telescopes (Koch et al. 2009) or to compensate 

the movements of a ship (Zheng et al. 2015)   

2.2 Industrial robot markets 

The top five markets in industrial robot business are in China, Japan, United States, 

Republic of Korea and Germany and 74 % of all industrial robots are located in these 

countries. China was the biggest market for industrial robots in 2018 and accounted for 

36 % of all industrial robot installations. This has been an ongoing trend in China since 

2013. The peak value in industrial robot installation in China was reached in 2017 and 

there was a slight drop of 1 % in 2018. However the total amount of 154 thousand units 
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in China was still more than the number of Europe and USA combined. Industrial robot 

installations in Japan saw a 21 % growth in 2018 to 55 thousand units. Japan is already a 

country with a high level automation industry so the average growth rate of 17 % since 

2013 is impressive. In the US the total amount of industrial robots has grown for eight 

years in a row. In 2018 the total amount of industrial robots in the US was over 40 

thousand, which was reached by a 22 % increase compared to the previous year. Also in 

the US the growing need for robots is due to added automation in manufacturing 

processes. The need for industrial robots in the Republic of Korea is generated by the 

electronics industry. Since the peak level of 41 thousand industrial robots in 2016 the 

number of units has decreased. In 2018 the total amount of industrial robots was just 

under 38 thousand, which was 5 % less than in 2016. Germany reaches the fifth place in 

the total amount of industrial robots in the world, with its 26 thousand units. There was 

an increase of 26 % compared to the previous year in 2018. The need for such a high level 

of industrial robots in Germany follows from the automotive industry (International 

federation of robotics, Executive Summary WR 2019 Industrial Robots, 2020). The total 

amount of industrial robot installations by regions can be seen in figure 1.  

 

Figure 1. The total amount of industrial robot installations by regions. 
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Most of the industrial robots are in some way connected to the automotive industry. 

Almost 30 % of industrial robots work in this area of business. The number of industrial 

robots has seen an annual growth rate of 13 % in 2013–2018. The increased level in robots 

is because of the economic crisis in 2009. After 2009 the automotive industry has changed 

its ways of working and increased the automation level in the manufacturing processes.  

The second largest market for industrial robots is in the electric and electronic industry. 

Manufacturing of communication devices, computers, radios and TV´s are included in 

this category. Also precision and optical products as well as medical equipment are 

included in the electronic industry. In 2017 31 % of industrial robots were linked to this 

area of business and the number of installed units almost passed the corresponding 

number of the automotive industry. In 2018 the need for electronic components decreased 

and the amount of installed industrial robots dropped by 14 %. The need for electronic 

components was affected by the trade crisis between USA and China. 

2.3 Degrees of freedom 

Robot´s configuration describes in which pose the robot is at the moment. Since a robot 

consist of links of a known shape, only a few parameters are needed to specify the robot´s 

configuration. For every robot the least amount of these real numbers that describe the 

configuration can be determined. The number of degrees of freedom tells this minimum 

amount of parameters, that are needed to represent the configuration (Lynch and Park 

2017, p. 29). The degrees of freedom (DOF) of a mechanism can be discussed through a 

simple door example. If a door is not attached to a door frame by a hinge joint, the door 

is able to rotate and translate about all three axes and would thereby have six degrees of 

freedom in total. Using the hinge joint reduces the degrees of freedom of the door and it 

can only rotate about the joint axis (Lynch and Park 2017, p. 33). By this example it is 

obvious that the joints used in the mechanism has an effect on the degrees of freedom. 

There are two other joint types that have only one DOF. The prismatic joint allows only 

translational movement about the joint axis and the helical joint, which allows translation 

and rotation about the screw axis. There are also joints that have multiple DOF. The 

cylindrical joint allows rotational and translational movement about the joint axis. The 

universal joint has two rotational degrees of freedom and a spherical joint allows 

movement in all three rotational axes (Lynch and Park 2017, p. 34). 
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These joints are used in every moving mechanism to connect the links. Degrees of 

freedom of a mechanism depends on the number of joints and links that are being used 

and can be calculated using Grübler’s formula, which is shown in equation (1), (2) and 

(3) (Lynch and Park 2017, p. 35).  

DOF = 𝑚(𝑁 − 1 − 𝐽) + ∑ 𝑓𝑖
𝐽
𝑖=1           (1) 

,where m is the degrees of freedom of a rigid body, 

 N is the number of links, 

 J is the number of joints, 

 𝑓𝑖 is the number of DOF provided by the ith joint. 

 

Using this formula to the door example above gives: 

DOF = 3(2 − 1 − 1) + 1 = 1          (2) 

,which means that the door would have one degree of freedom just like discussed before. 

The number of degrees of freedom can be either a positive or negative integer or zero 

(Duysinx and Géradin 2004, p. 28). If the DOF of a mechanism is greater than zero the 

mechanism is considered as a mobile mechanism. When the DOF of the mechanism is 

equal to zero the mechanism is a statically determined structure. This means that the 

mechanism is unable to move at all. The DOF can also be a negative integer and in these 

cases the mechanism is considered as a statically undetermined mechanism or an over 

constrained mechanism (Stamper 1997, p. 31). If we take another look at the door 

example discussed by Lynch and Park (2017, p. 33) and add another hinge joint to the 

mechanism, we can see that the results from Grübler’s formula are not always that easy 

to utilize. Adding another hinge to the door mechanism gives: 

DOF = 3(2 − 1 − 2) + 2 = −1          (3) 

As mentioned before when the DOF gets a negative value the mechanism is a statically 

undetermined structure. However, it is clear that the door can actually rotate about the 

joint axis no matter how many hinges there are. As Lynch and Park mentioned (2017, p. 
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39) Grübler’s formula requires that the constraints provided by the joints have to be 

independent which is not always achieved.  

Another downside of the Grübler’s formula is that it only tells the total number of the 

degrees of freedom. It would be useful to know whether these degrees of freedom are 

translational or rotational (Li, Xu 2007a, p. 3). 

2.4 Accuracy and repeatability 

Robot’s performance is measured in three parameters. Accuracy describes how precisely 

the robot can move it´s end effector to programmed position and orientation. The second 

parameter is repeatability, which is perhaps even more important when comparing 

different robots. Repeatability describes the robot’s ability to always reach the same 

position and orientation. For example, if the robot’s end effector positions vary 5 mm 

from the programmed position, the robot’s accuracy is quite poor. However, if the robot 

always reaches the same 5 mm inaccurate position, its repeatability is excellent. The third 

performance parameter is resolution. Resolution is used to describe the smallest 

increment in the end effector position and orientation the robot can produce (Conrad and 

Shiakolas 2000).  Resolution is limited by the resolution of position and velocity sensors 

in the joints. Also the gear ratio of the joints affects the resolution (Duysinx and Géradin 

2004, p. 48). 

There are multiple things that affect the overall accuracy of a robot. According to Conrad 

and Shiakolas (2000) these accuracy degreasing aspects can be divided into three main 

groups. Firstly, the dynamics of the robot affect its overall accuracy. Because robots can 

move quite fast, inertia has a great effect on performance. There is friction in the joints 

and also the servo system including encoders have limited resolution. The second main 

group consists of structure related concerns. Operating temperature and payload causes 

many drawbacks in accuracy. Also the bearings and gears cause friction. The third group 

is the kinematics. The forward kinematics problem is solved with DH (Denavit 

Hartenberg) -parameters of the robot. These parameters include link lengths and 

coordinate transformations that are calculated from the robot´s mechanical geometry. All 

the tolerance error in link manufacturing causes inaccuracy. The difference between the 
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mechanical dimensions and the forward kinematics formula was also discussed by 

Siciliano et al. (2009, p. 108). 

Also the mechanical structure of the robot affects its accuracy. According to Siciliano et 

al. (2009, p. 26) a Cartesian robot has a constant accuracy in every point of the work 

space. This is because every degree of freedom of the robot correspond to a Cartesian 

variable. This means that every parallel actuator moves the end effector only in x-, y- or 

z-direction. In comparison to a cylindrical or a spherical manipulator the accuracy differs 

inside the work space. The usage of one or multiple rotational joints causes this error in 

accuracy. Because the resolution in a rotary encoder is constant, the accuracy decreases 

as the radial stroke increases.   

The positioning accuracy 𝐴𝑝 is calculated using equation (4) based on the ISO 9283 

standard, which was also used by Şirinterlikçi et al (2009). Also Płaczek and Piszczek 

(2018) and Stephan et al. (2009) used the newer version of the same standard when 

evaluating the accuracy and repeatability of an industrial robot. Figure 2 presents the 

positioning accuracy and repeatability. As equation (4) and figure 2 show, positioning 

accuracy can be calculated from the mean value of attained positions and the programmed 

target position. The positioning accuracy is the minimum distance between the mean 

value of all measured points and the target point.  

𝐴𝑝 = √(�̅� − 𝑥𝑐)2 + (�̅� − 𝑦𝑐)2          (4)

       

,where 𝐴𝑝 is the positioning accuracy, 

 �̅� is the mean of measured positions in x-direction, 

 𝑥𝑐 is the programmed target position in x-direction, 

�̅� is the mean of measured positions in y-direction, 

 𝑦𝑐 is the programmed target position in y-direction. 
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Figure 2. Positioning accuracy and repeatability. 

 

The positioning repeatability is the radius of a smallest enclosing circle of all measured 

points, which can be seen from figure 2.  The positioning repeatability can be calculated 

using the following equations (5) (6) and (7). At first the mean value of positioning 

repeatability is calculated using equations (5) and (6). After this the standard deviation 

can be defined using equation (7).  

𝑙𝑖 = √(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2          (5) 

𝑙 ̅ =
1

𝑛
∑ 𝑙𝑖

𝑛
𝑖=1             (6) 

            

    

𝑆𝑙 = √
∑ (𝑙𝑖−𝑙)̅2𝑛

𝑖=1

𝑛−1
            (7) 

,where 𝑙𝑖  is the ith positioning repeatability, 

𝑥𝑖 is the ith measured x position, 

 𝑥𝑐 is the target x position, 

𝑦𝑖 is the ith measured y position, 

 𝑦𝑐 is the target y position, 

 𝑙 ̅is the mean value of positioning repeatability, 

 𝑛 is the number of measured points, 

 𝑆𝑙 is the standard deviation for l  
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The positioning repeatability can be calculated using equation (8) according to ISO 

9283:1998 standard.  

𝑅𝑃 = 𝑙 ̅ + 3 ⋅ 𝑆𝑙            (8) 

,where 𝑅𝑃 is the positioning repeatability, 

 𝑙 ̅is the mean oppositional repeatability, 

 𝑆𝑙  is the standard deviation for l. 

2.5 Programming methods 

Using robots in production processes increases productivity and flexibility of a company. 

However, productivity can increase only when lot sizes are big enough to cover the costs 

caused by robot programming. Consequently, small to medium sized enterprises (SME) 

cannot easily profit from investing in a robot. According to Pan et al. (2012) in a vehicle 

hull welding process it can take up to 8 months to program the correct trajectories for the 

robot. The welding process itself takes only 16 hours so the time consumed in teaching 

the robot is about 360 times higher.  

There are two main methods for industrial robot programming. In online programming, 

which covers lead-through- and walk through –programming, the robot’s end effector is 

manually moved to different positions which are then saved in the robot’s memory. 

Moving the robot is done with a teach pendant by the operator. These positions can later 

be used in programming the robot. The basic principle of online programming method is 

simple but it can be utilized only in simple processes and the quality of the product is 

highly dependent on the operator´s skills (Pan et al. 2012). The Lead-through method or 

jogging the robot from position to another is not usually that intuitive and it takes a lot of 

effort from the programmer to manage between multiple coordinate systems. When the 

programming is finally completed there is still a lot of testing and verifying before the 

robot can be used in production safely. In addition to time consuming programming, the 

reuse of the program is difficult. Even if there are only a few differences in the workpiece, 

the programming work has to start over. Despite all of these downsides, online 

programming is usually the only option the SME companies have (Pan et al. 2012). 
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There have been multiple methods to improve online programming. Sugita et al (2004) 

presented an option to traditional teaching pendant for programming a deburring robot. 

This three-wire type teaching support device includes a dummy tool that can be moved 

by hand. The position and orientation of the tool can be measured and this data can be 

used later in programming the actual robot. Sugita et al (2004) also presented an arm-type 

teaching support device, which achieved more accurate measurements in comparison to 

the wire type teaching support device.  

Schraft and Meyer (2006) introduced a new online programming method especially for 

SMEs with small lot sizes. This method includes a force and torque sensing handle that 

is mounted directly on the robot. In this walk-through method the force applied to the 

handle by the user is measured and this way the movements of the robot can be generated. 

This type of walk-through method has been used for a long time in industry but the 

trajectories generated by human hand have not been accurate enough for some processes 

and too hard to modify. To overcome this problem Schraft and Meyer (2006) introduced 

tools to modify the trajectories and velocity afterwards.  

Also Choi and Lee (2001) introduced a walk-through programming method, which was 

based on a force and torque sensing handle. This COSMO-II sensor can be used to 

program a 6-DOF robot arm. The principle of the COSMO-II sensor is based on Force 

Sensing Resistors (FSR) that detect the movements of the handle. When force is applied 

to the handle the contact bolts inside it are being pressed closer to FSRs and the resistance 

of it changes. 

There are also multiple online programming methods that are not affected by the 

inaccuracy of a human. Zhang et al. (2006) introduced an automated online programming 

method for a 6 DOF robot used in deburring aluminum wheels. This programming 

method benefits from different sensors and is therefore not affected by the inaccuracy of 

a programmer. This programming method uses a camera and visual processing of the 

image to follow a marked line on the wheel. The camera is used to define the XY 

coordinate of the tool tip. In addition to the visual sensing a force sensor is used. The tool 

tip is kept in contact with the surface utilizing the measurement data from the force sensor. 

This way the missing Z coordinate is generated. According to Zhang et.al (2006) this sort 
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of sensor guided online programming method for wheel deburring reduces the 

programming time to less than an hour. 

Offline programming (OLP) method is feasible when production lot sizes are large 

enough. In OLP method the whole robot sell is modelled in 3D CAD world. In the 3D 

simulation program, it is easy for the programmer to test all trajectories of the robot and 

to ensure that they are collision free. The biggest advantage of using OLP method is that 

the robot can work while the next program is generated, which decreases the robot down 

time. When planning a new production cycle, robot programming can be done at the same 

time with the rest of the production work and not after it like in online programming. It 

is also easy to modify the trajectories and points in the robot program, which increases 

the reusability of an old robot program. As mentioned before the OLP method is 

financially reasonable only with lot sizes that are large enough. Hence, SMEs are usually 

not able to benefit from offline programming. OLP software is expensive and usually 

some modifications are required before it is able to reach the requirements of a process. 

These modifications to the software require high level programming that usually exceeds 

the skill level of a traditional robot programmer. All of these costs can be seen in increased 

programming overhead. Most of the time the 3D model of the robot sell does not match 

the real world and some modifications have to be done to the robot program. To meet the 

accuracy requirements of the process some calibration to the trajectories have to be done 

using different sensors.  

Offline programming begins by generating the 3D model of the robot cell and all the 

components in it. Usually there already exists a 3D model for most of the components but 

a 3D model can also be generated using a laser scanner like Bi and Lang presented (Bi, 

Lang 2007, p. 4). After the robot sell is modelled in 3D world some position tags are 

generated. These tags include features from the workpiece like corners and edges and 

robot tool position that help in the programming phase, like robot home position, or 

approach points. A serial robot can reach a point in space with multiple configurations. It 

is the programmer’s job to decide which configurations are used in program and how to 

minimize the transition from configuration to another. If there are multiple robots working 

on the same workpiece the process timing needs to be discussed to minimize the cycle 

time. After this the robot cell actions can be simulated and robot trajectories can be 

confirmed without using the real robots. Now the program can be transferred to the actual 
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robot and the calibration work begins. Ideally the program would work immediately in 

the real world but in most cases it has to be fine-tuned.  

Yet another option to robot programming is based on augmented reality (AR). Robot 

programming using AR is the newest programming method and it is based on virtual 

robot in the real world. AR utilizes computer generated objects blended with the real 

world. AR is used to generate robot trajectories and it is very intuitive just like the walk-

through method. Using AR, the programmer can choose between multiple simulated 

trajectories and they can be modified afterwards. In addition, AR programming is much 

safer than online programming. It is intuitive because the programmer can move the robot 

in augmented reality. AR makes robot’s trajectories and the surrounding area scalable, 

which helps when programming bigger robots like a robot used to wash an airplane. The 

biggest advantage in the AR in comparison to VR (virtual reality) is that in AR the 

surrounding area does not have to be simulated (Chong et al. 2009). OLP programming 

method using VR was discussed also by Holubek et al. (2018). 
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3 KINEMATICS 

Industrial robots can be divided into two groups depending on their mechanical structure. 

A serial structured robot is a robot which links are attached to the next and previous with 

a motor-actuated joint. A serial structured mechanism is also known as an open-chain 

mechanism (Lynch and Park 2017, p. 36). In an open-chain mechanism the first link is 

attached to the stationary base and the last link holds the end effector. An articulated robot 

is an example of a serial structured robot.  

The other type of industrial robots are the parallel structured robots. The parallel robots 

consist of at least one closed loop in their mechanical structure (Lynch and Park 2017, p. 

263). A good example of a parallel robot is the Stewart Platform where six actuators are 

attached to the same platform. A delta robot is also a good example of a parallel 

mechanism.  

Generally said, for serial structured robots the forward kinematics problem is much easier 

to solve in comparison to parallel structures. When solving the forward kinematics 

problem of a parallel structure there might be multiple or no solutions. On the other hand, 

the inverse kinematics problem is much more complex for serial structures (Lynch and 

Park 2017, p. 247). With parallel structures the inverse kinematics solution is dependent 

on the number of closed kinematic loops in the mechanism. For parallel structures the 

inverse kinematics problem gets easier when the number of closed loops increases 

(Stamper 1997, p. 33). For example, the most common version of the Stewart platform 

includes six closed loops in its structure, while the corresponding number for the delta 

robot is only three.  

In this chapter the forward and inverse kinematics of a serial structure are discussed. The 

forward kinematics problem is reviewed using two popular methods, the Denavit-

Hartenberg method and the product of exponentials.    

3.1 Forward kinematics in an open chain mechanism 

Forward kinematics in robotics are used to define the location and orientation of the end 

effector from varying joint positions (Lynch and Park 2017, p. 137). The forward 



26 

kinematic problem for an open chain mechanism can be solved with two different 

methods.  The first one is called the Denavit-Hartenberg method where reference frames 

are used to solve the forward kinematics problem. In the Denavit-Hartenberg method the 

transition from reference frame to another can be done by using four parameters, which 

are called the DH-parameters of the mechanism. Three of these parameters describe the 

transition from reference frame to another and the fourth parameter defines the varying 

joint position 𝜃. Four is the minimum amount of parameters to describe the displacement 

between two link frames (Lynch and Park 2017, p. 176). 

Defining the displacement between link frames i-1 and i can be done as shown in figure 

3. The first thing to do is to set the �̂�i-1-axis of the reference frame i-1 coincident with the 

rotation axis i-1. This can be done by rotating the i-1 frame about the �̂�i-1-axis by 𝛼i-1 

degrees. After this the shortest distance ai-1 between axis �̂�i-1 and �̂�i is defined. Now the 

reference frame i-1 can move along �̂�i-1-axis for ai-1 units. After this the reference frame 

i-1 is moved for di units about the �̂�i -axis. The last thing to do is to rotate the i-1 frame 

about the �̂�i-1-axis by ϕi degrees to make reference frames i-1 and i corresponding (Lynch 

and Park 2017, p. 604). 

  

Figure 3. Moving from a reference frame to another (retell Lynch and Park 2017). 
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After transformations for every frame is defined according to DH-parameters the forward 

kinematics solution is solved by multiplying them sequentially. For every homogeneous 

transformation Ti-1,i can be written as shown in the equations (9)−(14) (Lynch and Park 

2017, p. 608).   

Ti-1,i = Rot(�̂�, 𝛼𝑖−1) Trans(�̂�, 𝑎𝑖−1) Trans(�̂�, 𝑑𝑖) Rot(�̂�, 𝜙𝑖)        (9) 

Ti-1,i  = [

cos𝜙𝑖 −sin𝜙𝑖 0 𝑎𝑖−1

sin𝜙𝑖 cos𝛼𝑖−1 cos𝜙𝑖 cos𝛼𝑖−1 −sin𝛼𝑖−1 −𝑑𝑖 sin𝛼𝑖−1

sin𝜙𝑖 sin𝛼𝑖−1 cos𝜙𝑖  sin𝛼𝑖−1 cos𝛼𝑖−1 𝑑𝑖 cos𝛼𝑖−1

0 0 0 1

],     (10) 

where 

Rot(�̂�, 𝛼𝑖−1) = [

1 0 0 0
0 cos𝛼𝑖−1 −sin𝛼𝑖−1 0
0 sin𝛼𝑖−1 cos𝛼𝑖−1 0
0 0 0 1

],       (11) 

Trans(�̂�, 𝑎𝑖−1) = [

1 0 0 𝑎𝑖−1

0 1 0 0
0 0 1 0
0 0 0 1

],        (12) 

Trans(�̂�, 𝑑𝑖) = [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

],        (13) 

Rot(�̂�, 𝜙𝑖) = [

cos𝜙𝑖 − 1 −sin𝜙𝑖 − 1 0 0
sin𝜙𝑖 − 1 cos𝜙𝑖 − 1 0 0

0 0 1 0
0 0 0 1

]       (14) 

,where 𝑎𝑖−1 is the transition along �̂�i-1-axis, 

�̂� is the rotation axis x, 

 �̂� is the rotation axis z, 

 𝛼𝑖−1is the rotation angle about rotation axis �̂�i-1, 

 𝜙𝑖  is the rotation about �̂�i-axis, 

 𝑑𝑖  is the transitions along rotation axis �̂�. 
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Figure 4 shows an example of DH-parameter usage for an open chain mechanism with 

three revolute joints. The table shown in figure 4 includes the DH parameters for the 

system. Reference frames 0 and 1 are in the same position and orientation. Therefore, the 

first line of the table includes only rotation component ϕ1. As seen from figure 4 the 

reference frames 1 and 2 are in the same position but have different orientation. To move 

from reference frame 1 to 2 the reference frame has to be turned about the �̂�1-axis. There 

is also the varying joint angle ϕ2 on the same row. Reference frames 3 and 4 are in the 

same orientation as the reference frame 2. Transition from the reference frame 2 to 3 is 

achieved by moving along �̂�2-axis for L1 units. Transition from reference frame 3 to 4 is 

done in the corresponding method for L2 units.  

 

 

Figure 4. An open chain mechanism with three revolute joints.  

  

Another method for solving the forward kinematics problem of an open chain mechanism 

is called the product of exponentials (PoE). The PoE method was reviewed by Lynch and 

Park (2017, p. 140-142). The PoE method begins by defining a fixed frame {s} in the 

robot´s base. Another frame {b} is located at the tip of the last link of the robot. After this 
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the robot is considered in its “home” or “zero” position. The home position of the robot 

is when it is in a configuration where all joint values are known. The programmer decides 

which configuration is to be used as a home position.  

The second phase of the PoE method is to define the matrix M in which the position and 

orientation of frame {b} in the {s} frame is included when the robot is in home position. 

The matrix M is a 4x4 matrix and tells the x, y and z position and orientation of the frame 

{b}.  

When the robot is in the home position, the screw axis for every revolute joint can be 

written. The screw axis for all joints can be written as a 1x6 matrix. The first three rows 

describe which axis of the fixed {s} frame the joint rotates about. For example in the case 

of a planar xy-mechanism the joint axis is always in the z-axis direction. The last three 

rows of the matrix describe the distance of the screw axis from the fixed {s} frame. The 

screw axis is defined for every joint in the same way.  

After the screw axis is defined for all joints the screw motion for the whole mechanism 

can be written as shown in equation (15) (Lynch and Park 2017, p. 200). 

𝑇(𝜙) = 𝑒[𝑆1]𝜙1 ⋅ … ⋅ 𝑒[𝑆𝑛]𝜙𝑛 ⋅ 𝑀        (15) 

, where  𝑇(𝜙) is the new configuration of the end-effector frame, 

 e is the Euler’s number, 

 S is the screw axis, 

 ϕ is the rotation about the screw axis in degrees, 

 M is the 4x4 matrix. 

 

The PoE method can also be applied to the open chain mechanism presented in figure 4. 

The mechanism is at its home position and the 4x4 matrix M can be written as shown in 

the equation (16).  

 

𝑀 = [

1 0 0 𝐿1 + 𝐿2
0 0 −1 0
0 1 0 0
0 0 0 1

]        (16) 



30 

 

,where M is the 4x4 matrix, 

 L1 is the distance between reference frames 2 and 3, 

 L2 is the distance between reference frames 3 and 4. 

 

As seen from equation (16) the reference frame 4 is moved for  𝐿1 + 𝐿2 units along the 

�̂�0-axis. The reference frame 4 is also rotated about x-axis for 90°. 

 

The screw axes Si = (ωi, vi) are listed in table (1).  The ωi parameter includes the rotation 

part of the Si matrix. For an example ω2 = (0, -1, 0) tells that the screw axis of the reference 

frame 2 rotates in the −�̂�0-direction of the reference frame 0.  The vi  component in the 

screw axes can be attained by writing vi = − ωi × qi , where qi is any point on joint axis i 

as written in coordinates in the fixed base frame. (Lynch and Park 2017, p. 142). For 

example by choosing q4 = (L1+L2, 0, 0) the v4 component can be solved by calculating 

v4 = − ω4 × q4, which gives (0, 0, − (L1+L2)).  

Table 1. Screw axes  

i 𝜔𝑖 𝑣𝑖 

1 (0, 0, 1) (0, 0, 0) 

2 (0, -1, 0) (0, 0, 0) 

3 (0, -1, 0) (0, 0, -L1) 

4 (0, -1, 0) (0, 0, -(L1+L2)) 

 

The PoE method can be studied through an example case. We assume that the mechanism 

shown in figure 4 is in a configuration, where the joints 2 and 3 have both turned by 45° 

and the gripper is pointing straight upwards. We also assume that the links L1 and L2 

have lengths L1 = 550 mm and L2 = 450 mm. By doing this the equations (17)−(19) can 

be written.  

𝑒[𝑆2]⋅𝜋/4 = [

0,71 0 −0,71 0
0 1 0 0

0,71 0 0,71 0
0 0 0 1

]        (17) 
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𝑒[𝑆3]⋅𝜋/4 = [

0,71 0 −0,71 161,09
0 1 0 0

0,71 0 0,71 −388,91
0 0 0 1

]       (18) 

 

𝑇(𝜙) = 𝑒[𝑆2]ϕ2 ⋅ 𝑒[𝑆3]ϕ3 ⋅ 𝑀 = [

0 −1 0 388,91
0 0 −1 0
1 0 0 838,91
0 0 0 1

]      (19) 

 

As can be seen from equation (19) the end-effector has now translated to position 

x = 388,91 mm, z = 838,91 mm in the fixed base frame. It has also rotated 90° about the 

�̂�0- and �̂�0-axes.  

3.2 Inverse kinematics 

The purpose of defining the inverse kinematics solution to an open chain mechanism is 

to find joint positions that produce the desired position and orientation of the end effector 

with respect to the base frame. Siciliano and Khatib (2008, p. 84) introduced a solution 

method for the inverse kinematics problem of a 6-DOF serial manipulator. Finding the 

solution to a inverse kinematics problem requires usage of six nonlinear equations. Three 

of these equations are used to define the inverse position kinematics and the remaining 

three equations define the orientation of the end effector. Together these equations form 

the homogeneous transformation matrix 𝑇6
0 which combines the position and orientation 

information from the nonlinear equations. Notation 𝑇6
0 describes the transformation from 

the sixth reference frame to the base frame. It is possible that no solution for inverse 

kinematics is found. There can also be multiple configurations for the joints that produce 

the desired position and orientation of the end effector. For a solution to be possible the 

target position has to be located in the working envelope of the mechanism. To find the 

solution to the inverse kinematics problem of an open chain 6-DOF mechanism, there are 

also two requirements for the mechanical structure. Three consecutive joints have to 

intersect in the same point. These intersecting joints are the joints that form the spherical 

wrist. The second condition is that three consecutive joints have to be parallel to each 

other. This condition is fulfilled by the first three joint axes. All six joint axes are revolute 

joints (Siciliano and Khatib 2008, p. 85). 
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According to Siciliano and Khatib (2008, p. 84)  the forward kinematics problem of a 6-

DOF mechanism can have either a closed-form solution or then it can be solved by using 

numerical methods. The closed-form solutions are usually preferred because they are fast 

to form and they include all possible solutions.  The biggest disadvantage in the closed-

form solutions is that they are robot dependent and cannot be utilized in general form. 

The first closed-form solution that Siciliano and Khatib (2008, p. 27) introduce is the 

algebraic method. In the algebraic method the most significant equations that contain the 

joint variables are identified and then these equations are manipulated to a more soluble 

form with only one unknown parameter. The second closed-form solution is the geometric 

method.  In the geometrical method the inverse kinematics problem is divided into two 

parts. At first an inverse position kinematics is formed and after this the inverse 

orientation kinematics. The first three revolute joint axes define the position of the end 

effector and the spherical wrist defines the orientation. Siciliano and Khatib (2008, p. 85) 

show that there are four possible solutions for the inverse position kinematics. When the 

two possible solutions for the inverse orientation kinematics are added, there are in total 

eight solutions for the inverse kinematics problem for a 6-DOF serial robot.  

Siciliano and Khatib (2008, p. 28) introduced also numerical methods for solving the 

inverse kinematics problem. The most valuable thing with numerical solving methods is 

that they are not robot dependent and so these solution methods can be applied to every 

mechanical structure. By using numerical methods the rotational and translational 

equations can be turned into a single equation with only one variable of 16th degree. This 

means that by using a 16th degree equation for the inverse kinematics problem, there can 

be sixteen solutions in total. However, a closed-form solution can only exist if the degree 

of the equation is four or less so in many cases, the mechanism is not soluble in closed-

form. Numerical methods can be divided into three categories that are symbolic 

elimination methods, continuation methods, and iterative methods.  
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4 DELTA ROBOTS 

In this chapter the different mechanical designs of the delta robot are introduced. Also the 

forward and inverse kinematics of the delta robot are discussed.   

4.1 Mechanical designs 

Parallel manipulators like the delta robot differ from the more popular serial manipulators 

due their mechanical structure. Parallel mechanisms consist of at least two kinematic 

loops that usually connect the moving platform to a stationary base. These kinematic 

loops are often referred to as “legs” or “limbs” of the robot. There is one actuated joint in 

every leg and the rest of the joints are passive. This structure ensures that the actuators 

are stationary and therefore their mass does not have to be moved. In serial robots the 

usage of actuator in every single joint increases inertia and reduces the payload capacity. 

Because of this, the major difference between parallel and serial robots is that the limbs 

of the parallel manipulator can be made much lighter, which guarantees higher 

accelerations and velocities. The biggest disadvantage in parallel manipulators is the 

reduced work space in comparison to a same sized serial robots (Stamper 1997, p. 1). 

There are two popular designs for delta robots. The difference between these two designs 

is in the actuator. Perhaps the most popular and known version of the delta uses rotary 

actuators, like (Stamper 1997) and Baqai et al. (Ghazi et al. 2018) discussed. In these 

versions the kinematic chain is 3-RSS, which means that there are 3 kinematic chains that 

consist of one revolute and two spherical joints. The other type of delta robot uses a 

prismatic actuator. This is usually accomplished by using a linear screw rail that is 

actuated by a servo motor. Linear delta robots can have different kinematic chains. Li and 

Xu have presented three different types of delta robots with different kinematic chains 

including a 3-PRS chain (Li and Xu 2007b), 3-PUU chain (Li and Xu 2008) and a 3-PRC 

chain mechanism (Li and Xu 2009). No matter which kinematic chain is being used, the 

parallelogram leg design ensures that the end effector has only 3 translational degrees of 

freedom and the delta robot can be seen as an x-y-z Cartesian positioning device (Lynch 

and Park 2017, p. 40). 
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4.2 Delta robot kinematics 

In this chapter the forward and inverse kinematics are discussed. The inverse kinematics 

model of a delta robot is solved using a vector loop method. 

4.2.1 Forward kinematics 

The forward kinematics problem is to find the unknown position of the end effector from 

the known joint values. The forward kinematics problem was discussed by (Stamper 

1997). In Stamper´s study the position vector �̅� of the end effector position P is solved 

from the known revolute joint values 𝜃1, 𝜃2 and 𝜃3 in the base xyz-coordinate frame. This 

mechanism consists of three identical limbs with revolute joint actuators. Each limb is 

built up by an input link and an upper arm with a four-bar parallelogram structure. In this 

study the forward kinematics problem is solved by using the loop closure equations for 

every limb. These equations are reduced algebraically to two 16th degree polynomial 

equations with two unknown angle variables. After this the first unknown variable is 

reduced by using the dialytic elimination method, which yields only one 32th degree 

equation. It is shown in the study that from the 32 possible solutions 16 are extraneous 

leaving 16 possible solutions for the forward kinematics problem. 

Güner et al. 2019 introduced a solution to a forward kinematics problem of a 3-PUU 

translational parallel manipulator (TPM). In this study the manipulator consists of three 

identical kinematic loops that have an actuated prismatic joint following by two passive 

universal joints. The solution of forward kinematics problem begins by finding the DH-

parameters for each limb.  After this, two vector loops are derived from the fixed base 

coordinate system to the moving coordinate system. Reference frames for each link are 

formed and by multiplying them the homogeneous transformation matrix is derived. 

Using these equations the forward kinematics of a 3-PUU TPM can be solved. 

4.2.2 Inverse kinematics 

The solution to the delta robot inverse kinematics problem was discussed by Uyar and 

Mutlu (2012). In their analytic vector-loop method, presented in figure 5, a fixed world 

coordinate system O(�⃗�, �⃗�, 𝑧) is assigned in the center of the upper frame. This upper 

frame can be seen as a triangle of points A1, A2 and A3. The moving platform is 
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determined by points B1, B2 and B3 and in the center of this platform is the moving 

coordinate system P(�⃗⃗�, �⃗�, �⃗⃗⃗�). All three linear screw rails 𝐴𝑖𝐶𝑖
̅̅ ̅̅ ̅ are in lay out angle of 𝜃 

degrees. The moving platform is attached to the prismatic joints 𝐴𝑖𝐶𝑖
̅̅ ̅̅ ̅  (linear screw rails) 

by three limbs 𝐶𝑖𝐵𝑖
̅̅ ̅̅ ̅, where i = 1,2,3.   

 

Figure 4. Wireframe model of the delta robot. 

 

In figure 6 the two varying angles α𝑖 and 𝛾𝑖 for each limb are presented. Angle 𝛾𝑖 

describes the angle between the limb and the vertical z-axis. Angle α𝑖 is between the 

projection of vector 𝐶𝑖𝐵𝑖
̅̅ ̅̅ ̅  to the fixed frame and the vector 𝑂𝐴𝑖

̅̅ ̅̅ ̅. 
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Figure 5. αi and γi angles of the rod. 

 

According to Uyar and Mutlu (2012) vector loops can be used to solve nonlinear 

kinematic equations (21)−(29). Vector OP can be written using position vectors 𝐴𝑖, 𝐵𝑖 

and 𝐶𝑖 as shown in the equation (20). 

𝑂𝑃̅̅ ̅̅ = 𝑂𝐴𝑖
̅̅ ̅̅ ̅ + 𝐴𝑖𝐶𝑖

̅̅ ̅̅ ̅  + 𝐶𝑖𝐵𝑖
̅̅ ̅̅ ̅ + 𝐵𝑖𝑃̅̅̅̅̅  =  +𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘       (20) 

𝑖1 → 𝑂𝐴1
̅̅ ̅̅ ̅̅ ⋅ c(30) − 𝐴1𝐶1

̅̅ ̅̅ ̅̅  ⋅ c(𝜃) ⋅ c(30) − 𝐶1𝐵1
̅̅ ̅̅ ̅̅ ⋅ s(𝛾1) ⋅ c(30 + α1) − 𝐵1𝑃̅̅ ̅̅ ̅ ⋅ c(30) −

𝑥 = 0           (21) 

𝑗1 →  −𝑂𝐴1
̅̅ ̅̅ ̅̅ ⋅ 𝑠(30) + 𝐴1𝐶1

̅̅ ̅̅ ̅̅ ⋅ 𝑐(𝜃) ⋅ 𝑠(30) + 𝐶1𝐵1
̅̅ ̅̅ ̅̅ ⋅ 𝑠(𝛾1) ⋅ 𝑠(30 + α1) + 𝐵1𝑃̅̅ ̅̅ ̅ ⋅

𝑠(30) − 𝑦 = 0         (22) 
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𝑘1 → −𝐴1𝐶1
̅̅ ̅̅ ̅̅ ⋅ 𝑠(𝜃) − 𝐶1𝐵1

̅̅ ̅̅ ̅̅ ⋅ 𝑐(𝛾1) − 𝑧 = 0       (23) 

𝑖2 → −𝐶2𝐵2
̅̅ ̅̅ ̅̅ ⋅ 𝑠(𝛾2) ⋅ 𝑐(α2) − 𝑥 = 0        (24) 

𝑗2 → −𝑂𝐴2
̅̅ ̅̅ ̅̅ + 𝐴2𝐶2

̅̅ ̅̅ ̅̅ ⋅ 𝑐(𝜃) + 𝐶2𝐵2
̅̅ ̅̅ ̅̅ ⋅ 𝑠(𝛾2) ⋅ 𝑠(α2) + 𝐵3𝑃̅̅ ̅̅ ̅ + 𝑦 = 0      (25) 

𝑘2 → −𝐴2𝐶2
̅̅ ̅̅ ̅̅ ⋅ 𝑠(𝜃) − 𝐶2𝐵2

̅̅ ̅̅ ̅̅ ⋅ c(𝛾2) − 𝑧 = 0       (26) 

𝑖3 → 𝑂𝐴3
̅̅ ̅̅ ̅̅ ⋅ c(30) − 𝐴3𝐶3

̅̅ ̅̅ ̅̅ ⋅ c(𝜃) ⋅ c(30) − 𝐶3𝐵3
̅̅ ̅̅ ̅̅ ⋅ s(𝛾3) ⋅ c(30 + α3) − 𝐵3𝑃̅̅ ̅̅ ̅ ⋅ c(30) +

𝑥 = 0          (27) 

𝑗3 →  −𝑂𝐴3
̅̅ ̅̅ ̅̅ ⋅ 𝑠(30) + 𝐴3𝐶3

̅̅ ̅̅ ̅̅ ⋅ 𝑐(𝜃) ⋅ 𝑠(30) + 𝐶3𝐵3
̅̅ ̅̅ ̅̅ ⋅ 𝑠(𝛾3) ⋅ 𝑠(30 + α3) + 𝐵3𝑃̅̅ ̅̅ ̅ ⋅

𝑠(30) − 𝑦 = 0         (28) 

𝑘3 → −𝐴3𝐶3
̅̅ ̅̅ ̅̅ ⋅ 𝑠(𝜃) − 𝐶3𝐵3

̅̅ ̅̅ ̅̅ ⋅ 𝑐(𝛾3) − 𝑧 = 0       (29) 

,where  𝑂𝑃̅̅ ̅̅  is vector from the point O(x, y, z) to the point P(u,v,w), 

𝑂𝐴𝑖
̅̅ ̅̅ ̅ is vector from the point O(x, y, z) to the point Ai , 

 𝐴𝑖𝐶𝑖
̅̅ ̅̅ ̅ is vector from the point Ai  to the point Ci. , 

 𝐶𝑖𝐵𝑖
̅̅ ̅̅ ̅ is vector from the point Ci. to the point Bi., 

 𝐵𝑖𝑃̅̅̅̅̅ is vector from point Bi. to the point P(u,v,w), 

s is sine, 

c is cosine.  

 

Equations (21)–(29) describe the x, y and z components of the vector loop for each limb. 

In this type of delta robot, which uses prismatic actuators, the only parameters that can be 

controlled are the three linear screw rail positions.  In inverse kinematics the goal is to 

find the correct joint values that produce the desired end effector position.  This means 

that it would be ideal to solve those 9 equations presented by Uyar and Mutlu (2012) even 

further so that the linear screw positions would be presented as a function of the x,y,z 

position of the moving platform. Equations (34)−(42) in appendix A show how the 

unknown variables α𝑖 and 𝛾𝑖 (i = 1, 2, 3) are solved from equations (21)−(29) above.  
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5 CONTROLLING DELTA ROBOT USING TWINCAT 3 

SOFTWARE 

In this chapter the prototype of a linear actuated delta robot is introduced, which is later 

referred to as JOTDelta. The main principles of the mechanical structure are discussed 

and the Beckhoff´s TwinCAT 3 software based controlling system of the robot is 

reviewed. This chapter shows how the inverse kinematics solution of the delta robot, 

which was found in the previous chapter, can be utilized in the control logic of the 

JOTDelta. Also the PLC program that is used for the accuracy measurement later in 

chapter five is discussed. The JOTDelta was designed and manufactured formerly during 

an internship period in summer 2019 by the author of this thesis, Mika Muurinen and 

Henri Remes.  

5.1 JOTDelta 

The JOTDelta is assembled in an aluminum profile frame, which is presented in figure 7. 

A triangular pyramid shaped rigid structure is mounted in the upper part of the aluminum 

profile frame. To each side of the triangular pyramid the linear screw rails, which are 

actuated by servo motors, can be placed securely. Each screw axis has a maximum stroke 

of 120 mm and can therefore adopt any position between zero and 120 mm. All three 

screw rails are attached to the moving platform by two aluminum rods. In both ends of 

the aluminum rods there is a spherical joint. Like usually in the case of a delta robot, only 

one joint is actuated and the spherical joints are passive. This structure forms a 3-PSS 

kinematic chain.  
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Figure 6. The JOTDelta. 

 

The end effector of the JOTDelta moves in Cartesian space along the virtual x-, y-, and 

z-axis. As shown in figure 5 the world coordinate system O(x, y, z) is located on top of 

the JOTDelta. When programming the robot it would be reasonable that the origin is in 

the center of the work space. By doing this arrangement, the end effector would be in 

position (0, 0, 0) when all three screw axes are in the middle of their maximum stroke at 

60 mm. The translation of the world coordinate system O(x, y, z) can be done by 
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modifying the 𝑘𝑖 (𝑖 = 1,2,3) component in the vector loop equations (23), (26) and (29) 

presented in chapter 3. By an iterative method it was seen that by adding a value 541.3 to 

each three equations (23), (26) and (29) the origin was set to the desired height.  

Figure 8 illustrates the situation after the world coordinate system O(x, y, z) is moved by 

541.3 mm. When all three linear screw rails are in the middle of their stroke at position 

60 mm, the world coordinate system O(x,y,z) and the moving coordinate system P(u,v,w) 

are coincident. Now the moving coordinate system P(u,v,w) can be driven in the world 

coordinate system O(x,y,z) by moving the three linear screw rails, which are notated as 

Axis 1, Axis 2 and Axis 3 in figure 8. 

 

Figure 7. World coordinate system O(x,y,z) and moving coordinate system P(u,v,w). 
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The vector loop equations (21)–(29) presented in the chapter 3 are universal and can 

therefore be applied to any delta robot with corresponding geometry. The JOTDelta can 

be scaled to the desired size for different applications and still the same equations can be 

used. The length of the vectors presented in the vector loop equations (21) – (29) were 

obtained from the 3D model of the robot for every (i = 1, 2, 3) as shown in the equations 

(30)−(33). 

𝑂𝐴𝑖 = 281 mm,         (30) 

𝐴𝑖𝐶𝑖 = 0 mm − 120 mm,         (31) 

𝐶𝑖𝐵𝑖 = 532 mm,         (32) 

𝐵𝑖𝑃 = 50 mm,         (33) 

Where 𝑂𝐴𝑖 is the distance from the world coordinate system O(x, y, z) to the upper end 

of the rods at screw axis position 0. Vector 𝐴𝑖𝐶𝑖 is the length of the linear screw axis and 

can adopt values between 0 mm and 120 mm. 𝐶𝑖𝐵𝑖 is the length between the spherical 

joints on both ends of the rods. Vector 𝐵𝑖𝑃 is the length from the lower spherical joint of 

each rod to the center point of the moving platform P (u, v, w) and in this case has a value 

of 50 mm.  

5.2 TwinCAT 3 software 

Beckhoff´s TwinCAT 3 software is an automation software, which can be used in various 

control applications such as manufacturing processes, construction machines or in public 

buildings. The TwinCAT 3 uses Visual Studio by Microsoft as a software development 

environment. The TwinCAT 3 software supports multiple PLC programming languages 

that are defined in the IEC 61131-3 standard, but can also be programmed using C and 

C++ or MATLAB/Simulink. In this case the PLC is programmed using the ST language 

(Structured text) (Beckhoff, 2020b).  
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There is also a motion control package included in the TwinCAT 3 software. This 

eXtended Motion Control feature offers solutions to point-to-point motion, NCI 

(Numerical Control Interpolation), CNC (Computerized Numerical Control) and robot 

control (Beckhoff, 2020a). Point-to-point movements are usable when only the starting 

point and the end point of the movement matters. This means that the end effector can 

move from the starting position to the end position by any possible route between these 

points. In some cases, such as machining or in robotics, we are interested also in the path 

of the movement. In applications like milling or robotic assembly it is crucial that not 

only the starting point and the end point but also the path is as described.  In these 

applications the NCI feature can be used. The eXtended Motion Control offers 

interpolated movements with three axes and five additional axes.  

Also interpolated motion for robotic control is supported. This feature includes the 

kinematic transformations for several different mechanisms. It can be used to calculate 

the kinematics for different mechanisms and the motion control can be formed efficiently. 

The kinematic transformations, which include forward transformation, inverse 

transformation and dynamic modelling are supported for different 2D mechanism, the 

SCARA robot and the delta robot. In the kinematic transformation for the delta robot the 

inner and outer arm lengths are parametrized. Also the displacement from the center to 

the rotary actuators can be set.  

The major downside of eXtended Motion Control kinematic transformation package is 

that only the delta robot with rotational actuators is supported. In this case the JOTDelta 

is actuated by linear screw rails and the kinematic package cannot be used.  

5.3 Programming the JOTDelta 

In this chapter the program that is used to make NCI movements with the JOTDelta is 

introduced. Also the usage of inverse kinematics equations (36), (39) and (42) shown in 

appendix A are discussed.  
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5.3.1 State machine based NCI program 

The program that is being used in controlling the JOTDelta is based on an NCI example 

program, which can be downloaded from Beckhoff´s website (Beckhoff 2020c). This 

example program is only to demonstrate how to start a program that uses interpolated 

movements so it needs modifications to be able to run the JOTDelta. The program begins 

by reading the status of every axis. In this program there are virtual axes x, y and z that 

demonstrate the Cartesian coordinate system. The first thing to do is to add three more 

axes so the actual screw rails can be operated. After this the axes are powered by using 

the MC_Power function block. This function sets the bEnable to true, which allows the 

axes to be driven.  

The program is based on a state machine. All possible states are shown as circled in figure 

9. Also the conditions for the state to change are shown next to the arrows in figure 9. 

The state machine can be used to divide the program into reasonable pieces and every 

state is responsible for one particular feature.  

When the JOTDelta is switched on, the state machine begins at state zero, which in this 

case is called Init. At this state the program just waits that the bExecute is set to true, 

which means that the user has pressed the start button and wants the robot to actually 

operate.  
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Figure 9. All possible states and conditions of the state machine. 

 

After the bExecute is set to true the state machine moves to the next state, which is 

ResetAxis. This state is used to set the z-axis to the desired height at the beginning of the 

program. When the program is started the position of each screw rail can be read from 

the encoders of the servo drives. However, the virtual x-, y- and z-axes are also used in 

controlling the JOTDelta and these axes do not have encoders. Because of the lack of 

encoders in virtual axes, these axes are at position zero at the beginning of the program.  

After this the NciState is set to SelectVelocity in which the user can set the velocity of 

the end effector as needed. When the correct velocity is accepted by the user the state 

machine moves to next state, which is called BuildGroup. In this step the 

CfgBuildExt3DGroup function from the PLC NCI library is called. This function creates 

a 3D interpolation group from the virtual x, y and z-axes. By using this function it is now 

possible to create interpolated path movements with the virtual x, y and z-axes. After the 

interpolation group is created the state machine moves to next state SelectTable. 
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In state SelectTable it is possible to choose which table is to be used in the movement. 

The tables are created under the main program as actions. In these actions the actual 

moving commands are written with structured text. All possible motion commands, 

which are type Struct, are found from the PLC library TcPlcInterpolation. This library 

offers an alternative of using G-code and interpolated motion commands are run directly 

from the PLC.  Every action begins by calling the function block 

FB_NciFeedTablePreparation, which appends a table of NCI movements to the PLC. 

This function block takes as an input movement commands, such as starting point of the 

movement, straight line command or circle command. After all motion commands are 

filled in the table the state machine moves to next state, which is FeedTable.  

In the state FeedTable the function block FB_NciFeedTable is called. This function block 

takes previously created motion commands as an input and transfers them to the NC 

kernel (Numerical Control), which executes the motion commands. After all motion 

commands are feeded to the NC kernel the state machine moves to state Movement.  

In the Movement state all three linear screw axes are driven. At first the LinAxisPos 

function is called. This function contains the inverse kinematic functions to all three screw 

axes. The inverse kinematics functions take as an input the x, y, and z position of the 

virtual axes.   

The actual position of the virtual axes that are being interpolated can be read from the 

Tc2_MC2 library under AXIS_REF. These actual positions of the interpolated x, y and z 

axes are fed to the inverse kinematics functions as an input and the screw axis positions 

that correspond that point can be calculated.  

After the new target position for every screw axis is calculated the function block 

MC_ExtSetPointGenEnable from the Tc2_MC2 library is called. This function switches 

the external set point generator of each axis on and the axis adopts the new set point 

shown in figure 10. After this the function block MC_ExtSetPointGenFeed is called and 

the screw axes are driven. The MC_ExtSetPointGenFeed function block takes as an input 

the target position calculated previously in the inverse kinematics functions. Also the 

velocity that was set by the user in state SelectVelocity is taken as an input.  
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Figure 10. Driving the screw rails in the PLC program. 

 

In every PLC cycle new x, y, z target position from the interpolated virtual axes is 

generated, corresponding screw axis positions are calculated and the screw axes are 

driven. Once the all motion commands are executed the bChannelDone bit of the function 

block FB_NciFeedTable is set true and the bExecute is set as false. The state machine can 

now move to Reset state where the program ensures that the bExecute is truly false. After 

this the state machine moves to state zero.  

5.3.2 Adding the inverse kinematics equations to the PLC program 

The inverse kinematics equations (36), (39) and (42) for all three linear screw axes are 

shown in appendix A. Each of these three equations 𝐴𝑖𝐶𝑖 describe the screw axis position 

as a function of x, y, z and 𝐴𝑖𝐶𝑖 position. To ease the inverse kinematics calculation for 

the PLC and the programming phase it is reasonable to modify the equations so that the 

equations take in only the target position xyz-coordinate as three variables.  

This modification can be done easily by using the MATLAB software. The MATLAB 

script, which is used to solve the unknown screw axis position 𝐴𝑖𝐶𝑖 as a function of x, y 

and z position variables is shown in appendix B. The script begins by defining the 

variables 𝑂𝐴𝑖, 𝐶𝑖𝐵𝑖, 𝐵𝑖𝑃 that are being used in the program. Also the layout angle 

variables 𝜃𝑖 (i = 1, 2, 3) of the screw axes are defined and the z_offset variable, which 

moves the origin O(x, y, z) to the desired height is placed. After this the inverse 

kinematics equations (36), (39) and (42) are written and stated as 𝑒𝑞𝑛𝑖 (i = 1, 2, 3).  

After this the equations can be solved using the MATLAB function solve(eqn, var). The 

solve(eqn, var) function takes as an input an equation and a variable that is being solved.  
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In this case the solve function is used to solve equations 𝑒𝑞𝑛𝑖 for the variables 𝐴𝑖𝐶𝑖. By 

adding a MATLAB function vpa(x, d) the script evaluates a symbolic input x to at least 

d digits.  In this case the vpa(x, d) function is used to evaluate 𝑒𝑞𝑛𝑖 functions to at least 

10 digits, which should give accurate enough solution to control the JOTDelta.  

The MATLAB script solves the three inverse kinematic equations 𝑒𝑞𝑛𝑖 as a function of 

x, y and z position. These solutions are now in correct form to be used in the PLC program 

to control the JOTDelta. The three final equations can be placed to the LinAxisPos 

function in the PLC program, which was discussed in the previous chapter.  
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6 ACCURACY MEASUREMENTS OF THE JOTDELTA 

This chapter focuses on accuracy measurements of the JOTDelta. The preparations that 

are needed for successful accuracy measurements are discussed. Also the measurement 

process is presented.  

6.1 Measurement preparation 

The accuracy measurement preparation was done during the internship period in summer 

2019 by the author of this thesis, Mika Muurinen and Henri Remes. During the first test 

drives with the JOTDelta it was seen that the programmed movements were not that 

accurate. The program contained straight line movement commands and still the motion 

of the end effector was more like a parabola. The inaccuracy of the test drive paths was 

confirmed by attaching a dial indicator to the moving platform.  

This issue was solved by using the Absolute Arm 6-axis by Hexagon. The Absolute Arm 

is a portable 6-axis measuring arm, which can be used in high accuracy measurements. 

Each 6 axes of the Absolute Arm are equipped with an absolute encoder. In the tip of the 

Absolute Arm is a touch probe and whenever the user presses the recording button the 

absolute position of the touch probe is recorded according to the position information of 

the encoders.  This measuring arm can be used to measure distances, angles and planes.   

The Absolute Arm was used to verify the crucial measures of the JOTDelta. As discussed 

earlier discussed in chapter 2.4, the differences between the nominal link length values 

that are being used in the kinematic equations and the actual link lengths can cause 

inaccuracy to the robots movements. The dimensions of the JOTDelta’s structure that 

were used in the inverse kinematics equations were obtained from the 3D model of the 

robot. The JOTDelta is built up from different machined parts and it was obvious that 

there is some slight error in dimensions that causes the inaccuracy of the robot. By 

measuring all crucial dimensions of the JOTDelta the inverse kinematics equations in the 

control logic can be edited so that they correspond to the actual dimensions of the robot. 

The measurement process begins by mounting the Absolute Arm on a stable surface. 

After this the touch probe is placed on the surface being measured and the user can save 
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measurement points of the touch probe by pressing a button on the side of the Absolute 

Arm.  

The dimensions of all six rods were studied by measuring the distance from the upper 

spherical joint to the lower one. Also the layout angle of the screw axes was measured by 

creating two planes from a set of data points measured from the upper triangle shaped 

frame and the mounting beams for the screw axes.   

6.2 Accuracy measurement equipment 

The accuracy measurement of the JOTDelta was performed using the Heidenhain 

KGM182 grid encoder. This grid encoder is used to evaluate the accuracy of machine 

tools. The grid encoder can be used to measure dynamic behavior and the positioning 

accuracy of the machine tool in different use cases. By these measurements the control 

loop of the machine tool can be studied and also the accuracy of the position feedback is 

checked. Also the effect of ambient temperature can be verified. The same equipment can 

be used to evaluate the positioning accuracy of the JOTDelta’s XY-plane.  

The equipment needed for this accuracy measurement is the KGM182 grid encoder with 

the scanning head, EIB741 External Interface Box and a PC with the ACCOM software, 

which is shown in figure 11.  At the beginning of the measurement process the scanning 

head is mounted to the machine, which is being inspected and the grid encoder is secured 

on the table. During the measurement the scanning head moves over the grid encoder. 

The EIB741 has four encoder inputs in total (X11-X14). In this measurement only two 

encoder inputs are used. The encoder input X11 reads the x-axis data while the encoder 

input X12 reads the y-axis data. The EIB741 is connected to the PC with a standard 

Ethernet interface for data output.    
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Figure 11. Measurement setup (Heidenhain, 2017). 

 

During the measurement the scanning head moves over the grid encoder without making 

mechanical contact. The gap between the scanning head the grid encoder is kept at 

0.5±0.05 mm. The grid encoder has a geometric pattern, which consist of 2.83 µm sized 

squares shown in figure 12. The scanning head has to be perfectly lined with the grid 

encoder. This is ensured by turning the adjustment screws in the scanning head. 
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Figure 12. The KGM182 grid encoder and the scanning head (Heidenhain, 2017). 

 

After the measurement setup is ready the ACCOM 3.2 software can be opened. At first 

the program asks to select the measuring method. In this measurement the KGM free-

form test was used By using the KGM free-form test as measurement method, more 

complex drive paths can be studied.  

After this the units of the measurement are set to (mm). Also the signal period is set to 

match the encoder type being used. In this case the signal period is the default value 4 

µm. The next thing to do is to select the counter card, which in this measurement was the 

EIB741 Also the IP address of the EIB741 can be set here. Alternatively the IP address 

of the PC, which is running the ACCOM software can be changed to correspond with the 

EIB741 IP address.  

The next thing to do is to ensure that the scanning head is perfectly lined with the grid 

encoder. This can be done by selecting Equipment  Oscilloscope in the ACCOM 3.2 

software. This opens the oscilloscope view, which is used to set the adjustment screws in 
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the scanning head to a correct position. The oscilloscope view shows the encoder signals 

X11 and X12 that are received in the EIB741. The target is to set the encoder signals, 

which are shown as black circles in figure 13, between the two red circles. When the 

encoder signals are right between the two red circles, on the green circle, the scanning 

head is lined with the grid encoder. If the gap between the scanning head and the grid 

encoder is too big the encoder signal cannot be adjusted to the correct level even with the 

adjustment screws.   

 

Figure 13. Adjusting the signal of the scanning head. 

 

The next thing to do is to set the directions of the measurement as desired. In this point 

the scanning head is driven to the positive x-direction. After this, also the positive y-

direction is taught. By doing this the ACCOM knows the positive direction of both axes 

but also the angular position of the grid encoder on the table.  

The path of the free-form test can be entered by selecting Measure  Enter path. Here 

the user can define the path being used in the measurement. The path, which is to be used 
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in the accuracy measurements for the JOTDelta, consists of straight line movements, 

which form a star shaped pattern with a diameter of 120 mm shown in figure 14. The 

measurement path begins from the origin. Next the robot is programmed to move 60 mm 

strokes to the arc of the pattern. Before heading to the next point on the arc of the star 

pattern, the robot returns to the origin. There are in total 16 points on the arc of the pattern 

which are gone through.  

 

Figure 14. Measurement path. 

 

When defining the measurement path the first thing to do is to set the feed rate and the 

starting point. After this, the actual movement commands are filled in by entering a 

straight line command and entering the target XY-position. A few example commands 

are shown in the figure 15. 

 

Figure 15. Path description in the measurement program. 
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Figure 16 shows the measurement arrangement. The figure shows the Heidenhain 

KGM182 grid encoder and the scanning head. The scanning head was mounted securely 

to the moving platform by using a screw joint.  

 

Figure 16. The KGM 182 grid encoder and the scanning head. 
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7 RESULTS AND DISCUSSION 

In this chapter the results of the positioning accuracy and repeatability measurements of 

the JOTDelta are discussed. Also the positioning accuracy of ABB’s Flexpicker IRB 360-

1/1130 delta robot is shown and a small-scale comparison between the results is made.  

7.1 JOTDelta results 

The positioning accuracy and repeatability of the JOTDelta was measured by driving a 

star shaped pattern with different velocities. From the measurement data shown in this 

chapter the accuracy and the repeatability of the JOTDelta can be evaluated. The same 

star shaped pattern with a diameter of 120 mm was measured 40 times with velocities of 

10 mm/s, 50 mm/s, 200 mm/s, 300 mm/s and  400 mm/s.  

After the measurement, the measurement data can be evaluated graphically in the 

ACCOM software as shown in figures 17 and 18. The programmed target path is marked 

with a black line and the actual path of the end effector, which was measured with the 

KGM182 grid encoder, can be seen as a red line.  

 

Figure 17. Measurement data around the origin using 10 mm/s velocity. 
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Figure 18. Measurement data around the point 8 using 10 mm/s velocity. 

 

The XY-position of the scanning head was measured 4000 times in each measurement. 

Measurement data can be imported to Microsoft Excel software for efficient analyzing. 

Table 1 presents the positioning inaccuracy of the JOTDelta in target points 1−16 for all 

velocities. The values are shown in micrometers (µm) and calculated by using equation 

(4).  

Table 1. Positioning inaccuracy of the JOTDelta in micrometers (µm). 
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By using the measurement data of table 1 the positioning accuracy can be presented as a 

dotted line graph for better evaluation as shown in figure 19. The positioning accuracy 

was measured only in the target points, which are presented as dots. The dashed line 

between the dots is only for better visualization and does not present any measurement.  

 

Figure 19. Positioning accuracy of the JOTDelta. 

 

From figure 19 it can be seen that the positioning accuracy of the JOTDelta varies a lot 

depending on the target position. The vertical axis shows the distance from the target 

point in µm, while the horizontal axis describes the target points. Perhaps the most 

interesting information in figure 19 is that the weakest result for the positioning accuracy 

was obtained with the lowest velocity of 10 mm/s. Generally said, the best results should 

be obtained with the lowest velocity and vice versa. This might be traced to the PLC 

program of the JOTDelta. All the other velocities produced almost the same results so it 

is interesting why the JOTDelta reacts like this with only the velocity of 10 mm/s.   

From the average value, which is shown as a black line in figure 19, it can be noticed that 

the point number 8 is the most accurate point and has an error value of 40.4 µm. Also 

from the points 7 and 15 quite good results were obtained, with values of 49.1 µm and 

71.3 µm. The poorest result in average is in the first target point, with a value of 254.2 µm.  
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The position repeatability was calculated by using equation (8). The position repeatability 

of the JOTDelta is shown in the table 2. Also the positioning repeatability was calculated 

in target points 1-16 for all velocities. 

Table 2. Positioning repeatability of the JOTDelta in micrometers (µm). 

 

The data from the table 2 is presented as a dotted line graph in figure 20. Only the dots 

present the actual measured values and the dashed line is for visualization. The vertical 

axis presents the position repeatability in µm and horizontal axis presents the different 

target points.  

 

Figure 20. Positioning repeatability of the JOTDelta. 
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The first thing to notice from figure 20 is that the weakest results are from the points 1 

and 9. This might also be traced to the PLC program. In the program the motion 

commands are feeded to the NC kernel in two pieces. By splitting the program in two 

pieces, the JOTDelta drives through first the points 1−8. After these movements are 

completed the other half of the target points are feeded into the NC kernel and drive 

commands to points 9−16 are executed. It seems that the weakest repeatability is attained 

in the first target points (1. and 9.) of both tables. After this the repeatability improves 

towards the last target points (8. and 16.) in both tables. 

One interesting thing is also that for some reason the measurements with the velocity of 

10 mm/s acts again totally different than the others. The repeatability stays below 200 µm 

in every target point and no such peaks are shown in points 1 and 9 like with the other 

velocities. The position repeatability stays below 450 µm in every point and every 

velocity. 

7.2 Results comparison 

ABB’s Flexpicker IRB 360-1/1130 delta robot, which is shown in figure 21, (later 

referred to as the Flexpicker) was tested by using the same measurement equipment. 

Unfortunately only one measurement with each velocity was done with the Flexpicker 

and because of this the results are not fully comparable.  
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Figure 21. ABB´s IRB 360 Flexpicker (ABB, 2017). 

 

Table 3 shows the positioning accuracy of the Flexpicker in points 1−16 and for all 

velocities 10– 400 mm/s. The information of the table is also presented in figure 22 with 

dotted lines. It is highly noticeable that the line graph in figure 22 is based on only one 

measurement for each velocity. The measured points are presented as dots and the dashed 

lines are only to ease interpreting the figure.  

Table 3. Positioning inaccuracy of the Flexpicker in micrometers (µm). 
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Figure 22. Positioning inaccuracy of the Flexpicker. 

 

From figure 22 it can be seen that the positioning inaccuracy stays under 140 µm in every 

point and every velocity. Also noticeable is that point 12. is the most accurate, and the 

maximum error is only 22 µm. The repeatability of the Flexpicker could not be evaluated 

due to lack of measurements. ABB informs in the datasheet of the Flexpicker that the 

position repeatability is 100 µm. In comparison to the JOTDelta the positioning accuracy 

and the repeatability of the Flexpicker seems better. However, it is noticeable that the 

repeatability of the Flexpicker is from the ABB’s datasheet and, therefore, can be biased 

information.  
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8 SUMMARY     

This thesis started with a review of the industrial robot features and the markets related 

to them. The most common industrial robot types were presented and compared. After 

this the forward and inverse kinematics problem of an open chain mechanism were 

studied. 

The kinematics discussion continued in chapter four, which focused on the delta robots. 

Different methods to solving the forward kinematics problem were presented from the 

literature and the inverse kinematics solution of the delta robot was shown. After this the 

state machine based control logic of a case study delta robot was presented. It was shown 

how the inverse kinematics solution can be implemented in the PLC program.  

The validity of the delta robot’s inverse kinematics model was examined by executing a 

set of tests to a case study delta robot. These tests included measuring the positioning 

accuracy and repeatability of the robot. The positioning accuracy and repeatability was 

measured with a grid encoder. Also a small-scale comparison between the case study 

delta robot and a commercial delta robot was arranged. It was predicted that the 

commercial delta robot would attain better results in the positioning accuracy and 

repeatability tests.  

The results show that the inverse kinematics model of the delta robot does actually work 

and good results from the positioning accuracy and repeatability were achieved. The 

performance of the case study delta robot could not be fully compared to the commercial 

delta robot.  

For the further studies it would be reasonable to start from modifying the PLC program. 

From the positioning accuracy measurements is was seen that the poorest result was 

attained with the lowest velocity. It is predicted that this exceptional behavior is due the 

drive commands from the PLC. It seems that feeding the drive commands from the PLC 

to the NC kernel causes the most inaccuracy in the results.  

These measurements studied only the XY-plane movements of the case study delta robot 

and it would be wise to measure also the positioning accuracy and repeatability of the z-
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axis. By developing the motion control of the case study delta robot further even better 

results from the positioning accuracy and repeatability would be available. Another aim 

for further studies is to compare the positioning accuracy and repeatability using different 

acceleration values in the drive commands.  

For further studies it would be a valuable idea to create a calibration tool for the delta 

robot. Also a feedback system of the end effectors position would make a difference in 

the results. It would also be interesting to see if the motion control of the delta robot could 

be fulfilled without using the built-in NCI libraries in the TwinCAT 3 software.  
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Appendix 1. Solving the unknown joint variables from the inverse kinematics equations. 

Variable 𝛾1can be solved from the equation (23), 

γ1 = acos(
−𝐴1𝐶1̅̅ ̅̅ ̅̅ ̅ ⋅s(𝜃)−𝒁

𝐶1𝐵1̅̅ ̅̅ ̅̅ ̅
)         (34) 

Variable α1can be solved from equation (22), 

α1 = asin(
−𝑂𝐴1̅̅ ̅̅ ̅̅ ⋅s(30)+𝐴1𝐶1̅̅ ̅̅ ̅̅ ̅⋅c(𝜃)⋅s(30)+𝐵1𝑃̅̅ ̅̅ ̅̅ ⋅s(30)−𝐘

−𝐶1𝐵1̅̅ ̅̅ ̅̅ ̅⋅s(γ1)
) − 30         (35) 

Equation (21) can be presented as, 

𝐴1𝐶1
̅̅ ̅̅ ̅̅ =

𝑂𝐴1̅̅ ̅̅ ̅̅ ⋅c(30)−𝐶1𝐵1̅̅ ̅̅ ̅̅ ̅⋅s(γ1)⋅c(30+α1)−𝐵1𝑃̅̅ ̅̅ ̅̅ ⋅c(30)−𝐗

c(𝜃)⋅c(30)
        (36) 

Now the equations (34) and (35) can be placed in the equation (36), which describes the 

inverse kinematics solution to the first screw axis as a function of x, y and z coordinates. 

This form is efficient when creating the control logic of the delta robot with the PLC.  The 

inverse kinematics equations to the second and third screw axis can also be solved 

similarly. 

Variable γ2 can be solved from the equation (26), 

γ2 = acos(
−𝐴2𝐶2̅̅ ̅̅ ̅̅ ̅⋅s(𝜃)−𝒁

𝐶2𝐵2̅̅ ̅̅ ̅̅ ̅
)         (37) 

Variable α2 can be solved from equation (24), 

α2 = acos(
−𝑿

𝐶2𝐵2̅̅ ̅̅ ̅̅ ̅⋅s(γ2)
)         (38) 

Equation (25) can be presented as, 

𝐴2𝐶2
̅̅ ̅̅ ̅̅ =  

−𝑂𝐴2̅̅ ̅̅ ̅̅ +𝐶2𝐵2̅̅ ̅̅ ̅̅ ̅⋅s(γ2)⋅s(α2)+ 𝐵2𝑃̅̅ ̅̅ ̅̅ +𝐘

−c(𝜃)
        (39) 



 

Placing the equations (37) and (38) to equation (39) yields the inverse kinematics solution 

to the second screw axis as a function of x, y, and z position. 

Variable γ3 can be solved from the equation (29), 

γ3 = acos(
−𝐴3𝐶3̅̅ ̅̅ ̅̅ ̅⋅s(𝜃)−𝒁

𝐶3𝐵3̅̅ ̅̅ ̅̅ ̅
)         (40) 

Variable α3 can be solved from equation (28), 

α3 = asin(
−𝑂𝐴3̅̅ ̅̅ ̅̅ ⋅s(30)+𝐴3𝐶3̅̅ ̅̅ ̅̅ ̅⋅c(𝜃)⋅s(30)+𝐵3𝑃̅̅ ̅̅ ̅̅ ⋅s(30)−𝐘

−𝐶3𝐵3̅̅ ̅̅ ̅̅ ̅⋅s(γ3)
) − 30           (41) 

Equation (27) can be presented as, 

𝐴3𝐶3
̅̅ ̅̅ ̅̅ =

𝑂𝐴3̅̅ ̅̅ ̅̅ ⋅c(30)−𝐶3𝐵3̅̅ ̅̅ ̅̅ ̅⋅s(γ3)⋅c(30+α3)−𝐵3𝑃̅̅ ̅̅ ̅̅ ⋅c(30)+𝐗

c(𝜃)⋅c(30)
          (42) 

Placing the equations (40) and (41) to the equation (42) gives the inverse kinematics 

solution to the third screw axis as a function of x, y and z coordinate point.   

 

 

 

 

 

 

 

 



 

Appendix 2. The MATLAB script for inverse kinematics equations. 

syms A1C1 A2C2 A3C3 x y z  
OA1      = 281;      %length in mm 
OA2      = OA1; 
OA3      = OA1; 
C1B1     = 532;      %length in mm 
C2B2     = C1B1; 
C3B3     = C1B1; 
B1P      = 50;       %length in mm 
B2P      = B1P; 
B3P      = B1P;        
theta1   = 47;       %angle in degrees 
theta2   = theta1; 
theta3   = theta1; 
z_offset = 541.3;    %Origin O(x,y,z) is moved to –z-direction by 541.3mm 
 

eqn1 = (OA1*cosd(30)-C1B1*sind(acosd((z_offset-A1C1*sind(theta1)-
z)/C1B1))*cosd(30+(asind((-
OA1*sind(30)+A1C1*cosd(theta1)*sind(30)+B1P*sind(30)-y)/(-
C1B1*sind(acosd((z_offset-A1C1*sind(theta1)-z)/C1B1))))-30))-
B1P*cosd(30)-x)/(cosd(theta1)*cosd(30)) == A1C1; 
 
eqn2 = (-OA2+C2B2*sind(acosd((z_offset-A2C2*sind(theta2)-
z)/C2B2))*sind(acosd((-x)/(C2B2*sind(acosd((z_offset-A2C2*sind(theta2)-
z)/C2B2)))))+B2P+y)/(-cosd(theta2)) == A2C2; 
 
eqn3 = (OA3*cosd(30)-C3B3*sind(acosd((z_offset-A3C3*sind(theta3)-
z)/C3B3))*cosd(30+(asind((-
OA3*sind(30)+A3C3*cosd(theta3)*sind(30)+B3P*sind(30)-y)/(-
C3B3*sind(acosd((z_offset-A3C3*sind(theta3)-z)/C3B3))))-30))-
B3P*cosd(30)+x)/(cosd(theta3)*cosd(30)) == A3C3; 
 

solA1C1 = vpa(solve(eqn1,A1C1),10) 
solA2C2 = vpa(solve(eqn2,A2C2),10) 
solA3C3 = vpa(solve(eqn3,A3C3),10) 

 


