167 research outputs found

    Novel mechanism for temperature-independent transitions in flexible molecules: role of thermodynamic fluctuations

    Full text link
    Novel physical mechanism is proposed for explanation of temperature-independent transition reactions in molecular systems. The mechanism becomes effective in the case of conformation transitions between quasi-isoenergetic molecular states. It is shown that at room temperatures, stochastic broadening of molecular energy levels predominates the energy of low frequency vibrations accompanying the transition. This leads to a cancellation of temperature dependence in the stochastically averaged rate constants. As an example, physical interpretation of temperature-independent onset of P2X_3 receptor desensitization in neuronal membranes is provided.Comment: 4 pages, 1 figur

    Improvement of Protective Oxide Layers Formed by Highfrequency Plasma Electrolytic Oxidation on Mg-RE Alloy with LPSO-Phase

    Full text link
    Received: 17.04.23. Revised: 17.05.23. Accepted: 23.05.23. Available online: 29.05.23.PEO of Mg-RE (LPSO) alloy allows improving its corrosion behaviour and surface mechanical properties.Increase of pulse frequency under PEO allows decreasing the porosity and heterogeneity of the oxide layers.The best corrosion resistance and adhesive strength demonstrate the oxide layer obtained in aluminate electrolyte under high-frequency PEO.Oxide layers on Mg97Y2Zn1 magnesium alloy with strengthening LPSO-phase were formed by plasma electrolytic oxidation (PEO) in bipolar mode with frequency variation of forming current pulses (50 and 500 Hz) and addition of sodium aluminate or sodium silicate to alkali phosphate fluoride electrolyte. Microstructure, chemical and phase composition, corrosion and mechanical properties of the oxide layers formed were investigated. With increasing current frequency for both electrolytes, an increase in homogeneity of the oxide layers structure and a decrease in their porosity and fracturing at constant thickness were recorded. The oxide layers formed at 500 Hz even with some decrease in hardness have better adhesive strength and 2 orders of magnitude higher short-term corrosion resistance values. PEO of Mg-alloy with LPSO-phase in the electrolyte with addition of sodium aluminate in combination with increased pulse frequency (500 Hz) allows forming the best-quality uniform oxide layer with high hardness, adhesive strength and corrosion resistance properties. The use of electrolyte with addition of sodium silicate reduced the adhesive strength by 1.5 times and brought down the long-term corrosion resistance of oxide layers by an order of magnitude, as compared with the electrolyte with sodium aluminate. The reason for a significant improvement in the complex of protective properties of the oxide layers with an increase in the current pulse frequency is supposed to be a decrease in the power and duration of individual microarc discharges with simultaneous increase in their number per unit oxidized area.Financial support is provided by the Russian Science Foundation (grant No. 20-79-10262), https://rscf.ru/project/20-79-10262/

    Improvement of protective oxide layers formed by high-frequency plasma electrolytic oxidation on Mg-RE alloy with LPSO-phase

    Get PDF
    Oxide layers on Mg97Y2Zn1 magnesium alloy with strengthening LPSO-phase were formed by plasma electrolytic oxidation (PEO) in bipolar mode with frequency variation of forming current pulses (50 and 500 Hz) and addition of sodium aluminate or sodium silicate to alkali phosphate fluoride electrolyte. Microstructure, chemical and phase composition, corrosion and mechanical properties of the oxide layers formed were investigated. With increasing current frequency for both electrolytes, an increase in homogeneity of the oxide layers structure and a decrease in their porosity and fracturing at constant thickness were recorded. The oxide layers formed at 500 Hz even with some decrease in hardness have better adhesive strength and 2 orders of magnitude higher short-term corrosion resistance values. PEO of Mg-alloy with LPSO-phase in the electrolyte with addition of sodium aluminate in combination with increased pulse frequency (500 Hz) allows forming the best-quality uniform oxide layer with high hardness, adhesive strength and corrosion resistance properties. The use of electrolyte with addition of sodium silicate reduced the adhesive strength by 1.5 times and brought down the long-term corrosion resistance of oxide layers by an order of magnitude, as compared with the electrolyte with sodium aluminate. The reason for a significant improvement in the complex of protective properties of the oxide layers with an increase in the current pulse frequency is supposed to be a decrease in the power and duration of individual microarc discharges with simultaneous increase in their number per unit oxidized area

    Molecular Modeling of Mechanosensory Ion Channel Structural and Functional Features

    Get PDF
    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex

    Functional Modifications of Acid-Sensing Ion Channels by Ligand-Gated Chloride Channels

    Get PDF
    Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABAA receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABAA receptor-mediated currents. Moreover, activation of the GABAA receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABAA receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABAA receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABAA receptors, also modified ASICs in spinal neurons. We conclude that GABAA receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels

    Acid-evoked Ca2+ signalling in rat sensory neurones: effects of anoxia and aglycaemia

    Get PDF
    Ischaemia excites sensory neurones (generating pain) and promotes calcitonin gene-related peptide release from nerve endings. Acidosis is thought to play a key role in mediating excitation via the activation of proton-sensitive cation channels. In this study, we investigated the effects of acidosis upon Ca2+ signalling in sensory neurones from rat dorsal root ganglia. Both hypercapnic (pHo 6.8) and metabolic–hypercapnic (pHo 6.2) acidosis caused a biphasic increase in cytosolic calcium concentration ([Ca2+]i). This comprised a brief Ca2+ transient (half-time approximately 30 s) caused by Ca2+ influx followed by a sustained rise in [Ca2+]i due to Ca2+ release from caffeine and cyclopiazonic acid-sensitive internal stores. Acid-evoked Ca2+ influx was unaffected by voltage-gated Ca2+-channel inhibition with nickel and acid sensing ion channel (ASIC) inhibition with amiloride but was blocked by inhibition of transient receptor potential vanilloid receptors (TRPV1) with (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide (AMG 9810; 1 μM) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropryazine-1(2H)-carbox-amide (BCTC; 1 μM). Combining acidosis with anoxia and aglycaemia increased the amplitude of both phases of Ca2+ elevation and prolonged the Ca2+ transient. The Ca2+ transient evoked by combined acidosis, aglycaemia and anoxia was also substantially blocked by AMG 9810 and BCTC and, to a lesser extent, by amiloride. In summary, the principle mechanisms mediating increase in [Ca2+]i in response to acidosis are a brief Ca2+ influx through TRPV1 followed by sustained Ca2+ release from internal stores. These effects are potentiated by anoxia and aglycaemia, conditions also prevalent in ischaemia. The effects of anoxia and aglycaemia are suggested to be largely due to the inhibition of Ca2+-clearance mechanisms and possible increase in the role of ASICs
    corecore