198 research outputs found

    P19 H-Ras Induces G1/S Phase Delay Maintaining Cells in a Reversible Quiescence State

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.[Background]: Three functional c-ras genes, known as c-H-ras, c-K-ras, and c-N-ras, have been largely studied in mammalian cells with important insights into normal and tumorigenic cellular signal transduction events. Two K-Ras mRNAs are obtained from the same pre-mRNA by alternative splicing. H-Ras pre-mRNA can also be alternatively spliced in the IDX and 4A terminal exons, yielding the p19 and p21 proteins, respectively. However, despite the Ras gene family’s established role in tumorigenic cellular signal transduction events, little is known about p19 function. Previous results showed that p19 did not interact with two known p21 effectors, Raf1 and Rin1, but was shown to interact with RACK1, a scaffolding protein that promotes multi-protein complexes in different signaling pathways (Cancer Res 2003, 63 p5178). This observation suggests that p19 and p21 play differential and complementary roles in the cell.[Principal Findings]: We found that p19 regulates telomerase activity through its interaction with p73a/b proteins. We also found that p19 overexpression induces G1/S phase delay; an observation that correlates with hypophosphorylation of both Akt and p70SK6. Similarly, we also observed that FOXO1 is upregulated when p19 is overexpressed. The three observations of (1) hypophosphorylation of Akt, (2) G1/S phase delay and (3) upregulation of FOXO1 lead us to conclude that p19 induces G1/S phase delay, thereby maintaining cells in a reversible quiescence state and preventing entry into apoptosis. We then assessed the effect of p19 RNAi on HeLa cell growth and found that p19 RNAi increases cell growth, thereby having the opposite effect of arrest of the G1/S phase or producing a cellular quiescence state.[Significance]: Interestingly, p19 induces FOXO1 that in combination with the G1/S phase delay and hypophosphorylation of both Akt and p70SK6 leads to maintenance of a reversible cellular quiescence state, thereby preventing entry into apoptosis.This work was supported by Fundacion de Investigacion Medica Mutua MadrileΓ±a Automovilista (Fundacion MMA), the Plan Nacional (MEC) BFU2005-00701 and the Fundacion Eugenio Rodriguez Pascual. M.C. was a recipient of a Fmed MMA fellowship.Peer reviewe

    The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts

    Get PDF
    To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability

    FoxO and Stress Responses in the Cnidarian Hydra vulgaris

    Get PDF
    Background: In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings: We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions: These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians an

    Constitutive phosphorylation of the FOXO1 transcription factor in gastric cancer cells correlates with microvessel area and the expressions of angiogenesis-related molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although FOXO transcription factors may have an anti-angiogenic role, little is known about their role in tumor angiogenesis. The present study was performed to investigate the correlation between the constitutive expression of phosphorylated FOXO1 (pFOXO1) and angiogenesis in gastric cancer.</p> <p>Methods</p> <p>Immunohistochemistry was performed on tissue array slides containing 272 gastric carcinoma specimens, and the correlations between the cytoplasmic pFOXO1 expression in gastric cancer cells and CD34-immunopositive microvessel area (MVA) or the expressions of angiogenesis-related molecules were analyzed. <it>In vitro </it>analyses with Western blotting and semiquantitative reverse transcription-polymerase chain reaction were performed using the stable SNU-638 gastric cancer cell line transfected with lentivirus-delivered FOXO1 short hairpin RNA.</p> <p>Results</p> <p>The cytoplasmic expression of pFOXO1 in tumor cells was observed in 85% of gastric carcinoma cases, and was found to be positively associated with higher MVA (<it>P </it>= 0.048). Moreover, pFOXO1 expression was positively correlated with the expressions of several angiogenesis-related proteins, including hypoxia inducible factor-1Ξ± (HIF-1Ξ±, <it>P </it>= 0.003), vessel endothelial growth factor (<it>P </it>= 0.004), phosphorylated protein kinase B (<it>P </it>< 0.001), and nuclear factor-ΞΊB (<it>P </it>= 0.040). In contrast, the expression of pFOXO1 was not correlated with that of phosphorylated signal transducer and activator of transcription 3 or Ξ²-catenin. In addition, cell culture experiments showed that FOXO1 suppression increased the mRNA and protein expressions of HIF-1Ξ±.</p> <p>Conclusion</p> <p>Our results suggest that pFOXO1 expression in cancer cells plays a role in gastric cancer angiogenesis via mechanisms involving various angiogenesis-related molecules. Animal experiments are needed to confirm the anti-angiogenic role of FOXO1 in human gastric cancer.</p

    A Combination of Genomic Approaches Reveals the Role of FOXO1a in Regulating an Oxidative Stress Response Pathway

    Get PDF
    Background: While many of the phenotypic differences between human and chimpanzee may result from changes in gene regulation, only a handful of functionally important regulatory differences are currently known. As a first step towards identifying transcriptional pathways that have been remodeled in the human lineage, we focused on a transcription factor, FOXO1a, which we had previously found to be up-regulated in the human liver compared to that of three other primate species. We concentrated on this gene because of its known role in the regulation of metabolism and in longevity. Methodology: Using a combination of expression profiling following siRNA knockdown and chromatin immunoprecipitation in a human liver cell line, we identified eight novel direct transcriptional targets of FOXO1a. This set includes the gene for thioredoxin-interacting protein (TXNIP), the expression of which is directly repressed by FOXO1a. The thioredoxininteracting protein is known to inhibit the reducing activity of thioredoxin (TRX), thereby hindering the cellular response to oxidative stress and affecting life span. Conclusions: Our results provide an explanation for the repeated observations that differences in the regulation of FOXO transcription factors affect longevity. Moreover, we found that TXNIP is down-regulated in human compared to chimpanzee, consistent with the up-regulation of its direct repressor FOXO1a in humans, and with differences in longevity between th

    Hsc70 Focus Formation at the Periphery of HSV-1 Transcription Sites Requires ICP27

    Get PDF
    The cellular chaperone protein Hsc70, along with components of the 26S proteasome and ubiquitin-conjugated proteins have been shown to be sequestered in discrete foci in the nuclei of herpes simplex virus 1 (HSV-1) infected cells. We recently reported that cellular RNA polymerase II (RNAP II) undergoes proteasomal degradation during robust HSV-1 transcription, and that the immediate early protein ICP27 interacts with the C-terminal domain and is involved in the recruitment of RNAP II to viral transcription/replication compartments.Here we show that ICP27 also interacts with Hsc70, and is required for the formation of Hsc70 nuclear foci. During infection with ICP27 mutants that are unable to recruit RNAP II to viral replication sites, viral transcript levels were greatly reduced, viral replication compartments were poorly formed and Hsc70 focus formation was curtailed. Further, a dominant negative Hsc70 mutant that cannot hydrolyze ATP, interfered with RNAP II degradation during HSV-1 infection, and an increase in ubiquitinated forms of RNAP II was observed. There was also a decrease in virus yields, indicating that proteasomal degradation of stalled RNAP II complexes during robust HSV-1 transcription and replication benefits viral gene expression.We propose that one function of the Hsc70 nuclear foci may be to serve to facilitate the process of clearing stalled RNAP II complexes from viral genomes during times of highly active transcription

    Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation

    Get PDF
    PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and chromatin-immunoprecipitation to demonstrate that PICH associates with centromeric chromatin during anaphase. Furthermore, by careful analysis of PICH-positive anaphase threads through FISH as well as bromo-deoxyurdine and CREST labeling, we strengthen the evidence that these threads comprise mainly alphoid centromere deoxyribonucleic acid. Finally, by timing the addition of ICRF-193 (a specific inhibitor of topoisomerase-II alpha) to cells synchronized in anaphase, we demonstrate that topoisomerase activity is required specifically to resolve PICH-positive threads during anaphase (as opposed to being required to prevent the formation of such threads during earlier cell cycle stages). These data indicate that PICH associates with centromeres during anaphase and that most PICH-positive threads evolve from inner centromeres as these stretch in response to tension. Moreover, they show that topoisomerase activity is required during anaphase for the resolution of PICH-positive threads, implying that the complete separation of sister chromatids occurs later than previously assumed

    Separase Phosphosite Mutation Leads to Genome Instability and Primordial Germ Cell Depletion during Oogenesis

    Get PDF
    To ensure equal chromosome segregation and the stability of the genome during cell division, Separase is strictly regulated primarily by Securin binding and inhibitory phosphorylation. By generating a mouse model that contained a mutation to the inhibitory phosphosite of Separase, we demonstrated that mice of both sexes are infertile. We showed that Separase deregulation leads to chromosome mis-segregation, genome instability, and eventually apoptosis of primordial germ cells (PGCs) during embryonic oogenesis. Although the PGCs of mutant male mice were completely depleted, a population of PGCs from mutant females survived Separase deregulation. The surviving PGCs completed oogenesis but produced deficient initial follicles. These results indicate a sexual dimorphism effect on PGCs from Separase deregulation, which may be correlated with a gender-specific discrepancy of Securin. Our results reveal that Separase phospho-regulation is critical for genome stability in oogenesis. Furthermore, we provided the first evidence of a pre-zygotic mitotic chromosome segregation error resulting from Separase deregulation, whose sex-specific differences may be a reason for the sexual dimorphism of aneuploidy in gametogenesis
    • …
    corecore