63 research outputs found

    Inhibition of Y1 receptor signaling improves islet transplant outcome

    Get PDF
    Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe

    PIP5KIβ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells

    Get PDF
    Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. © 2013 Szalinski et al

    Pulsatility of insulin release – a clinically important phenomenon

    Get PDF
    The mechanisms and clinical importance of pulsatile insulin release are presented against the background of more than half a century of companionship with the islets of Langerhans. The insulin-secreting β-cells are oscillators with intrinsic variations of cytoplasmic ATP and Ca2+. Within the islets the β-cells are mutually entrained into a common rhythm by gap junctions and diffusible factors (ATP). Synchronization of the different islets in the pancreas is supposed to be due to adjustment of the oscillations to the same phase by neural output of acetylcholine and ATP. Studies of hormone secretion from the perfused pancreas of rats and mice revealed that glucose induces pulses of glucagon anti-synchronous with pulses of insulin and somatostatin. The anti-synchrony may result from a paracrine action of somatostatin on the glucagon-producing α-cells. Purinoceptors have a key function for pulsatile release of islet hormones. It was possible to remove the glucagon and somatostatin pulses with maintenance of those of insulin with an inhibitor of the P2Y1 receptors. Knock-out of the adenosine A1 receptor prolonged the pulses of glucagon and somatostatin without affecting the duration of the insulin pulses. Studies of isolated human islets indicate similar relations between pulses of insulin, glucagon, and somatostatin as found during perfusion of the rodent pancreas. The observation of reversed cycles of insulin and glucagon adds to the understanding how the islets regulate hepatic glucose production. Current protocols for pulsatile intravenous infusion therapy (PIVIT) should be modified to mimic the anti-synchrony between insulin and glucagon normally seen in the portal blood

    Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration

    Get PDF
    Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein–coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions

    Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion

    Get PDF
    Cyclic AMP (cAMP) and Ca(2+) are key regulators of exocytosis in many cells, including insulin-secreting beta cells. Glucose-stimulated insulin secretion from beta cells is pulsatile and involves oscillations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse beta cells. These oscillations were preceded and enhanced by elevations of [Ca(2+)](i). However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca(2+)](i) rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis

    Tensin2 reduces intracellular phosphatidylinositol 3,4,5-trisphosphate levels at the plasma membrane.

    No full text
    Tensins are proposed cytoskeleton-regulating proteins. However, Tensin2 additionally inhibits Akt signalling and cell survival. Structural modelling of the Tensin2 phosphatase (PTPase) domain revealed an active site-like pocket receptive towards phosphoinositides. Tensin2-expressing HEK293 cells displayed negligible levels of plasma membrane phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) under confocal microscopy. However, mock-transfected cells, and Tensin2 cells harbouring a putative phosphatase-inactivating mutation, exhibited significant PtdIns(3,4,5)P(3) levels, which decreased upon phosphatidylinositol 3-kinase inhibition with LY294002. In contrast, wtTensin3, mock and mutant cells were identical in membrane PtdIns(3,4,5)P(3) and Akt phosphorylation. In vitro lipid PTPase activity was however undetectable in isolated recombinant PTPase domains of both Tensins, indicating a possible loss of structural stability when expressed in isolation. In summary, we provide evidence that Tensin2, in addition to regulating cytoskeletal dynamics, influences phosphoinositide-Akt signalling through its PTPase domain

    Imaging sub-plasma membrane cAMP dynamics with fluorescent translocation reporters

    No full text
    Imaging cAMP dynamics in single cells and tissues can provide important insights into the regulation of a variety of cellular processes. In recent years, a large number of tools for cAMP measurements have been developed. While most cAMP reporters are designed to undergo changes in fluorescence resonance energy transfer (FRET), there are alternative techniques with advantages for certain applications. Here, we describe protocols for cAMP measurements in the sub-plasma membrane space based on the detection of the cAMP-induced translocation of engineered fluorescent protein-tagged subunits of protein kinase A between the cytoplasm and the plasma membrane. Total internal reflection fluorescence (TIRF) imaging of the changes in reporter localization yields robust signal changes and has contributed to the discovery of cAMP oscillations in the sub-plasma membrane space of insulin-secreting β-cells stimulated with glucose and gluco-incretin hormones. We also demonstrate how the technique can be combined with measurements of the cytosolic Ca2+ concentration or with recordings of the subcellular localization of the cAMP effector protein Epac2. The translocation reporter approach provides a valuable complement to other methods for imaging sub-membrane cAMP dynamics in various types of cells
    corecore