4,165 research outputs found
Discovery of a Luminous Quasar in the Nearby Universe
In the course of the Pico dos Dias survey (PDS), we identified the stellar
like object PDS456 at coordinates alpha = 17h 28m 19.796s, delta = -14deg 15'
55.87'' (epoch 2000), with a relatively nearby (z = 0.184) and bright (B =
14.69) quasar. Its position at Galactic coordinates l_II = 10.4deg, b_II =
+11.2deg, near the bulge of the Galaxy, may explain why it was not detected
before. The optical spectrum of PDS456 is typical of a luminous quasar, showing
a broad (FWHM ~ 4000 km/s) H_\beta line, very intense FeII lines and a weak
[OIII]\lambda5007 line. PDS456 is associated to the infrared source IRAS
17254-1413 with a 60 \mum infrared luminosity L_{60} = 3.8 x 10^{45} erg/s. The
relatively flat slopes in the infrared (\alpha(25,60) = -0.33 and \alpha(12,25)
= -0.78) and a flat power index in the optical (F_{\nu} \propto \nu^{-0.72})
may indicate a low dust content. A good match between the position of PDS456
and the position of the X-ray source RXS J172819.3-141600 implies an X-ray
luminosity L_x = 2.8 x 10^{44} erg/s. The good correlation between the strength
of the emission lines in the optical and the X-ray luminosity, as well as the
steep optical to X-ray index estimated (\alpha_{ox} = -1.64) suggest that
PDS456 is radio quiet. A radio survey previously performed in this region
yields an upper limit for radio power at ~ 5 GHz of ~ 2.6 x 10^{30} erg/s/Hz.
We estimate the Galactic reddening in this line-of-sight to be A_B \simeq 2.0,
implying an absolute magnitude M_B = -26.7 (using H_0 = 75 km s^{-1} Mpc^{-1}
and q_0 = 0). In the optical, PDS456 is therefore 1.3 times more luminous than
3C 273 and the most luminous quasar in the nearby (z \leq 0.3) Universe.Comment: 12 pages, LaTeX (aasms4.sty) + 3 figures; accepted for publication in
  the Astrophysical Journal Letter
Band-structure trend in hole-doped cuprates and correlation with Tcmax
By calculation and analysis of the bare conduction bands in a large number of
hole-doped high-temperature superconductors, we have identified the energy of
the so-called axial-orbital as the essential, material-dependent parameter. It
is uniquely related to the range of the intra-layer hopping. It controls the Cu
4s-character, influences the perpendicular hopping, and correlates with the
observed Tc at optimal doping. We explain its dependence on chemical
composition and structure, and present a generic tight-binding model.Comment: 5 pages, Latex, 5 eps figure
Augmenting the 6-3-5 method with design information
This paper describes a comparative study between the 6-3-5 Method and the ICR Grid. The ICR Grid is an evolved variant of 6-3-5 intended to better integrate information into the concept generation process. Unlike a conventional 6-3-5 process where participants continually sketch concepts, using the ICR Grid (the name derived from its Inform, Create, Reflect activities and structured, grid-like output) participants are additionally required to undertake information search tasks, use specific information items for concept development, and reflect on the merit of concepts as the session progresses. The results indicate that although the quantity of concepts was lower, the use of information had a positive effect in a number of areas, principally the quality and variety of output. Although grounded in the area of product development, this research is applicable to any organisation undertaking idea generation and problem solving. As well as providing insights on the transference of information to concepts, it holds additional interest for studies on the composition and use of digital libraries
Cutting edges at random in large recursive trees
We comment on old and new results related to the destruction of a random
recursive tree (RRT), in which its edges are cut one after the other in a
uniform random order. In particular, we study the number of steps needed to
isolate or disconnect certain distinguished vertices when the size of the tree
tends to infinity. New probabilistic explanations are given in terms of the
so-called cut-tree and the tree of component sizes, which both encode different
aspects of the destruction process. Finally, we establish the connection to
Bernoulli bond percolation on large RRT's and present recent results on the
cluster sizes in the supercritical regime.Comment: 29 pages, 3 figure
Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data
Constraint Programming (CP) has proved an effective paradigm to model and
solve difficult combinatorial satisfaction and optimisation problems from
disparate domains. Many such problems arising from the commercial world are
permeated by data uncertainty. Existing CP approaches that accommodate
uncertainty are less suited to uncertainty arising due to incomplete and
erroneous data, because they do not build reliable models and solutions
guaranteed to address the user's genuine problem as she perceives it. Other
fields such as reliable computation offer combinations of models and associated
methods to handle these types of uncertain data, but lack an expressive
framework characterising the resolution methodology independently of the model.
  We present a unifying framework that extends the CP formalism in both model
and solutions, to tackle ill-defined combinatorial problems with incomplete or
erroneous data. The certainty closure framework brings together modelling and
solving methodologies from different fields into the CP paradigm to provide
reliable and efficient approches for uncertain constraint problems. We
demonstrate the applicability of the framework on a case study in network
diagnosis. We define resolution forms that give generic templates, and their
associated operational semantics, to derive practical solution methods for
reliable solutions.Comment: Revised versio
Higher-order Mechanics: Variational Principles and other topics
After reviewing the Lagrangian-Hamiltonian unified formalism (i.e, the
Skinner-Rusk formalism) for higher-order (non-autonomous) dynamical systems, we
state a unified geometrical version of the Variational Principles which allows
us to derive the Lagrangian and Hamiltonian equations for these kinds of
systems. Then, the standard Lagrangian and Hamiltonian formulations of these
principles and the corresponding dynamical equations are recovered from this
unified framework.Comment: New version of the paper "Variational principles for higher-order
  dynamical systems", which was presented in the "III Iberoamerican Meeting on
  Geometry, Mechanics and Control" (Salamanca, 2012). The title is changed. A
  detailed review is added. Sections containing results about variational
  principles are enlarged with additional comments, diagrams and summarizing
  results. Bibliography is update
Sensitive observations at 1.4 and 250 GHz of z > 5 QSOs
We present 1.4 and 5 GHz observations taken with the Very Large Array (VLA),
and observations at 250 GHz obtained with the Max-Planck millimeter bolometer
(MAMBO) at the IRAM 30~m telescope, of ten optically selected Quasi-stellar
Objects (QSOs) at 5.0 < z < 6.28. Four sources are detected at 1.4 GHz two of
which are radio loud and are also detected at 5 GHz. These results are roughly
consistent with there being no evolution of the radio-loud QSO fraction out to
z~6.
  Three sources have been detected at 250 GHz or 350 GHz at much higher levels
than their 1.4 GHz flux densities suggesting that the observed mm emission is
likely thermal emission from warm dust, although more exotic possibilities
cannot be precluded.
  The highest redshift source in our sample (J1030+0524 at z=6.28) is not
detected at 1.4 or 250 GHz, but four fairly bright radio sources (flux density
at 1.4GHz > 0.2 mJy) are detected in a 2' field centered on the QSO, including
an edge-brightened ('FRII') double radio source with an extent of about 1'.
  A similar over-density of radio sources is seen in the field of the highest
redshift QSO J1148+5251. We speculate that these over-densities of radio
sources may indicate clusters along the lines-of-sight, in which case
gravitational lensing by the cluster could magnify the QSO emission by a factor
2 or so without giving rise to arcsecond-scale distortions in the optical
images of the QSOs.Comment: 25 pages, 12 figures. accepted by A
The classical origin of quantum affine algebra in squashed sigma models
We consider a quantum affine algebra realized in two-dimensional non-linear
sigma models with target space three-dimensional squashed sphere. Its affine
generators are explicitly constructed and the Poisson brackets are computed.
The defining relations of quantum affine algebra in the sense of the Drinfeld
first realization are satisfied at classical level. The relation to the
Drinfeld second realization is also discussed including higher conserved
charges. Finally we comment on a semiclassical limit of quantum affine algebra
at quantum level.Comment: 25 pages, 2 figure
Finding community structure in networks using the eigenvectors of matrices
We consider the problem of detecting communities or modules in networks,
groups of vertices with a higher-than-average density of edges connecting them.
Previous work indicates that a robust approach to this problem is the
maximization of the benefit function known as "modularity" over possible
divisions of a network. Here we show that this maximization process can be
written in terms of the eigenspectrum of a matrix we call the modularity
matrix, which plays a role in community detection similar to that played by the
graph Laplacian in graph partitioning calculations. This result leads us to a
number of possible algorithms for detecting community structure, as well as
several other results, including a spectral measure of bipartite structure in
networks and a new centrality measure that identifies those vertices that
occupy central positions within the communities to which they belong. The
algorithms and measures proposed are illustrated with applications to a variety
of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio
- …
