We consider the problem of detecting communities or modules in networks,
groups of vertices with a higher-than-average density of edges connecting them.
Previous work indicates that a robust approach to this problem is the
maximization of the benefit function known as "modularity" over possible
divisions of a network. Here we show that this maximization process can be
written in terms of the eigenspectrum of a matrix we call the modularity
matrix, which plays a role in community detection similar to that played by the
graph Laplacian in graph partitioning calculations. This result leads us to a
number of possible algorithms for detecting community structure, as well as
several other results, including a spectral measure of bipartite structure in
networks and a new centrality measure that identifies those vertices that
occupy central positions within the communities to which they belong. The
algorithms and measures proposed are illustrated with applications to a variety
of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio