27,408 research outputs found

    Non-ergodic states induced by impurity levels in quantum spin chains

    Full text link
    The semi-infinite XY spin chain with an impurity at the boundary has been chosen as a prototype of interacting many-body systems to test for non-ergodic behavior. The model is exactly solvable in analytic way in the thermodynamic limit, where energy eigenstates and the spectrum are obtained in closed form. In addition of a continuous band, localized states may split off from the continuum, for some values of the impurity parameters. In the next step, after the preparation of an arbitrary non-equilibrium state, we observe the time evolution of the site magnetization. Relaxation properties are described by the long-time behavior, which is estimated using the stationary phase method. Absence of localized states defines an ergodic region in parameter space, where the system relaxes to a homogeneous magnetization. Out of this region, impurity levels split from the band, and localization phenomena may lead to non-ergodicity.Comment: 10 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1703.0344

    Betti numbers of the moduli space of rank 3 parabolic Higgs bundles

    Get PDF
    We compute the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and we study their variation with this parameter.Comment: 78 pages. Extended version. Added a section with the fixed determinant case. To appear in Memoirs of the AM

    Towards Noncommutative Linking Numbers Via the Seiberg-Witten Map

    Get PDF
    In the present work some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three dimensional manifold, it is shown that the effect of noncommutativity is the appearance of 6n6^n new knots at the nn-th order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincar\'e dual to the high-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincar\'e dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincar\'e dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative 'Jones-Witten' invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter, we also show the relation to the noncommutative Landau levels.Comment: 19 pages, 1 figur

    Classical Bianchi type I cosmology in K-essence theory

    Get PDF
    We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid modeling the usual matter content and with cosmological constant. The classical solutions for any but the stiff fluid and without cosmological constant are found in closed form, using a time transformation. We also present the solution whith cosmological constant and some particular values of the barotropic parameter. We present the possible isotropization of the cosmological model, using the ratio between the anisotropic parameters and the volume of the universe and show that this tend to a constant or to zero for different cases. We include also a qualitative analysis of the analog of the Friedmann equation.Comment: 15 pages with one figure, accepted in Advances in High Energy Physic

    Tetraneutron condensation in neutron rich matter

    Full text link
    In this work we investigate the possible condensation of tetraneutron resonant states in the lower density neutron rich gas regions inside Neutron Stars (NSs). Using a relativistic density functional approach we characterize the system containing different hadronic species including, besides tetraneutrons, nucleons and a set of light clusters (3^3He, α\alpha particles, deuterium and tritium). σ,ω\sigma,\omega and ρ\rho mesonic fields provide the interaction in the nuclear system. We study how the tetraneutron presence could significantly impact the nucleon pairing fractions and the distribution of baryonic charge among species. For this we assume that they can be thermodynamically produced in an equilibrated medium and scan a range of coupling strengths to the mesonic fields from prescriptions based on isospin symmetry arguments. We find that tetraneutrons may appear over a range of densities belonging to the outer NS crust carrying a sizable amount of baryonic charge thus depleting the nucleon pairing fractions.Comment: 10 pages, 9 figure
    • 

    corecore