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We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological
model, with a barotropic perfect fluid (𝑝 = 𝛾𝜌) modeling the usual matter content and with cosmological constant Λ. Classical
exact solutions for any 𝛾 ̸= 1 and Λ = 0 are found in closed form, whereas solutions for Λ ̸= 0 are found for particular values
in the barotropic parameter. We present the possible isotropization of the cosmological model Bianchi I using the ratio between
the anisotropic parameters and the volume of the universe. We also include a qualitative analysis of the analog of the Friedmann
equation.

1. Introduction

In recent times, some attempts to unify the description of
dark matter, dark energy, and inflation, by means of a scalar
field with nonstandard kinetic term, have been conducted [1–
6]. The K-essence theory is based on the idea of a dynamical
attractor solutionwhich causes it to act as a cosmological con-
stant only at the onset of matter domination. Consequently,
K-essence overtakes the matter density and induces cosmic
acceleration at about the present epoch. Usually K-essence
models are restricted to the Lagrangian density of the form
[4, 7–10]

𝑆 = ∫𝑑
4
𝑥√−𝑔 [𝑓 (𝜙)G (𝑋) 5 − 𝑉 (𝜙)] , (1)

where the canonical kinetic energy is given by G(𝑋) = 𝑋 =

−(1/2)∇
𝜇
𝜙∇

𝜇
𝜙. K-essencewas originally proposed as amodel

for inflation and then as a model for dark energy, along
with explorations of unifying dark energy and dark matter
[7, 11, 12]. Other motivations to consider the action above
originate from string theory [13, 14]. For more details for K-
essence applied to dark energy you can see [15] and references
therein.

In this framework, gravitational andmatter variables have
been reduced to a finite number of degrees of freedom. For

homogenous cosmological models the metric depends only
on time and gives a model with a finite dimensional configu-
ration space, called minisuperspace. In this work, we use this
formulation to obtain classical solutions to the anisotropic
Bianchi type I cosmological model with a perfect fluid. This
class of models was considered initially in this formalism by
Chimento and Forte [16]. The first step is to write the theory
for the Bianchi type I model in the usual manner; that is,
we calculate the corresponding energy-momentum tensor to
the scalar field and give the equivalent Lagrangian density.
Next, by means of a Legendre transformation, we proceed
to obtain the canonical Lagrangian Lcan, from which the
classical HamiltonianH can be found.

One of the simplest K-essence models, without self-
interaction, has the following Lagrangian density:

Lgeo = 𝑅 + 𝑓 (𝜙)G (𝑋) , (2)

where 𝑅 is the scalar curvature and 𝑓(𝜙) is an arbitrary
function of the scalar field.

From the Lagrangian (2) we can build the complete
action:

𝐼 = ∫
Σ

√−𝑔 (Lgeo +L
Λ
+Lmat) 𝑑

4
𝑥, (3)

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2014, Article ID 805164, 11 pages
http://dx.doi.org/10.1155/2014/805164

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205043763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in High Energy Physics

where Lmat is the matter Lagrangian, L
Λ

= 2Λ is the
cosmological constant Lagrangian, and 𝑔 is the determinant
of the metric tensor. The field equations for this theory are

𝐺
𝛼𝛽
+ Λ𝑔

𝛼𝛽
+ 𝑓 (𝜙) [G

𝑋
𝜙
,𝛼
𝜙
,𝛽
+G𝑔

𝛼𝛽
] = −𝑇

𝛼𝛽
, (4a)

𝑓 (𝜙) [G
𝑋
𝜙
,𝛽

;𝛽
+G

𝑋𝑋
𝑋

;𝛽
𝜙
,𝛽
] +

𝑑𝑓

𝑑𝜙
[G − 2𝑋G

𝑋
] = 0, (4b)

where we work in units with 8𝜋𝐺 = 1 and, as usual, the
semicolon means a covariant derivative and a subscripted 𝑋
denotes differentiation with respect to𝑋.

The same set of (4a), (4b) is obtained if we consider
the scalar field 𝑋(𝜙) as part of the matter content; that is
to say, L

𝑋,𝜙
= 𝑓(𝜙)G(𝑋) with the corresponding energy-

momentum tensor:

T
𝛼𝛽
= 𝑓 (𝜙) [G

𝑋
𝜙
,𝛼
𝜙
,𝛽
+G (𝑋) 𝑔

𝛼𝛽
] . (5)

Considering the energy-momentum tensor of a baro-
tropic perfect fluid,

𝑇
𝛼𝛽
= (𝜌 + 𝑃) 𝑢

𝛼
𝑢
𝛽
+ 𝑃𝑔

𝛼𝛽
, (6)

where 𝑢
𝛼
is the four-velocity, which satisfies the relation

𝑢
𝜇
𝑢
𝜇
= −1, 𝜌 is the energy density, and 𝑃 is the pressure

of the fluid. For simplicity we consider a comoving perfect
fluid. The pressure, the energy density, and the four-velocity,
corresponding to the energy-momentum tensor of the field
𝑋, become

𝑃 (𝑋) = 𝑓 (𝜙)G, 𝜌 (𝑋) = 𝑓 (𝜙) [2𝑋G
𝑋
−G] ,

𝑢
𝜇
=

∇
𝑢
𝜙

√2𝑋
;

(7)

thus, the barotropic parameter is

𝜔
𝑋
=

G

2𝑋G
𝑋
−G

(8)

and we notice that the case of a constant barotropic index
𝜔
𝑋
(with the exception 𝜔

𝑋
= 0) can be obtained by the G

function

G = 𝑋
(1+𝜔𝑋)/2𝜔𝑋 . (9)

We have the following states in the evolution of our universe
in this formalism:

stiff matter : 𝜔
𝑋
= 1, 󳨀→ G (𝑋) = 𝑋,

Radiation : 𝜔
𝑋
=
1

3
, 󳨀→ G (𝑋) = 𝑋

2
,

inflation like : 𝜔
𝑋
= −

1

3
, 󳨀→ G (𝑋) =

1

𝑋
,

𝜔
𝑋
= −

2

3
, 󳨀→ G (𝑋) =

1

4√𝑋
.

(10)

The mathematical analysis for the last two cases is very
complicated in both regimes, classical and quantum one.

For quantum radiation case, the resulting Wheeler-DeWitt
equation appears as fractionary differential equation, and
the results will be reported elsewhere. In [6], the authors
present the analysis to radiation era using dynamical systems
obtaining bouncing solutions. It is worthy to mention that
(4b) was especialized in [17] to flat FRW cosmological model
and solved using an extended tachyon field from which an
extendedChaplygin gas can arise, which interpolates between
a power law phase and a de Sitter phase. The author found
the general solutions for linear expansion to the functional
𝐺(𝑋) and particular 𝑓(𝜙) → 𝜙

−2 and showed from the
kinematic point of view that this model and the quintessence
scalar field one driven by an exponential potential are the
same, but they are dynamically nonequivalent because the
K-field and the scalar potential are linked by the Einstein
equation, similar to our next equations (19). However our
results contain other functions 𝑓(𝜙); then we argued that
explanation to the corresponding observational data and the
kinematic properties, since each formalism will have big
differences.

1.1. Anisotropic Cosmological Bianchi Class A Models, 𝑓(𝜙) =
Constant. Considering the cosmological anisotropic Bianchi
class A models with metric (23), (4b) in terms of 𝑋 becomes
(here and all where appear the 󸀠 means, 󸀠 = 𝑑/𝑑𝜏 = 𝑑/𝑁𝑑𝑡,
with 𝑡 the usual cosmic time)

[G
𝑋
+ 2𝑋G

𝑋𝑋
]𝑋

󸀠
+ 6Ω

󸀠
𝑋G

𝑋
= 0, (11)

and its corresponding solution becomes

𝑋G
2

𝑋
= 𝜂𝑒

−6Ω
, (12)

with 𝜂 a constant.
Note that (12) gives us the possible solution 𝑋(𝐴), as

a function of the scale factor, and therefore the behavior
of all physical properties of the K-essence (like 𝜌, 𝑃) is
completely determined by the function 𝑋 and does not
depend on the evolution of the other types of energy density.
The only dependence of the K-essence component on other
components enters through 𝐴(𝜏) = 𝑒

Ω(𝜏) in Bianchi class A
cosmological models.

In the following we present the analysis when 𝑓(𝜙) is
a constant and generic function of the field 𝜙 assuming a
Bianchi type I metric, which is the anisotropic generalization
of flat FRW cosmological model, and we present the solution
in quadrature form.

1.1.1. Quintessence Radiation Like Case: G=𝑋2 and 𝑓(𝜙) =
Constant. Using the equation

𝑋G
2

𝑋
= 𝜂𝑒

−6Ω (13)

for the energy kinetic we have the form

𝑋 =
3√
𝜂

4
𝑒
−2Ω

, (14)

then the field 𝜙 has the solution

Δ𝜙 = √2
6√
𝜂

4
∫ 𝑒

−Ω
𝑑𝜏. (15)



Advances in High Energy Physics 3

1.1.2. Quintessence Stiff Fluid Like Case: G = 𝑋 and 𝑓(𝜙) ≠
Constant. The field equations for this particular case are

𝐺
𝛼𝛽
+ Λ𝑔

𝛼𝛽
+ 𝑓 (𝜙) (𝜙

,𝛼
𝜙
,𝛽
−
1

2
𝑔
𝛼𝛽
𝜙
,𝛾
𝜙
,𝛾
) = −𝑇

𝛼𝛽
, (16a)

2𝑓 (𝜙) 𝜙
,𝛼

;𝛼
+
𝑑𝑓

𝑑𝜙
𝜙
,𝛾
𝜙
,𝛾
= 0, (16b)

and the energy-momentum tensor (5) has the following form:

T
𝛼𝛽
= 𝑓 (𝜙) (𝜙

,𝛼
𝜙
,𝛽
−
1

2
𝑔
𝛼𝛽
𝜙
,𝛾
𝜙
,𝛾
) . (17)

In this new line of reasoning, action (3) can be rewritten as a
geometrical part andmatter content (usualmatter plus a term
that corresponds to the exotic scalar field component of the
K-essence theory).

The equation of motion for the field 𝜙 (16b) has the
following property, using the metric of the Bianchi type I
model (however, this is satisfied by all cosmological Bianchi
class A models):

3Ω
󸀠
𝜙
󸀠
𝑓 + 𝜙

󸀠󸀠
𝑓 +

1

2

𝑑𝑓

𝑑𝜙
𝜙
󸀠2
= 0, (18)

which can be integrated at once with the following result:

1

2
𝑓 (𝜙) 𝜙

󸀠2
= 𝜂𝑒

−6Ω
, 󳨀→ ∫√𝑓 (𝜙)𝑑𝜙 = √2𝜂∫ 𝑒

−3Ω(𝜏)
𝑑𝜏,

(19)

where 𝜂 is an integration constant and has the same sign as
𝑓(𝜙). Considering the particular form of 𝑓(𝜙) = 𝜔𝜙

𝑚 or
𝑓(𝜙) = 𝜔𝑒

𝑚𝜙 with 𝑚 and 𝜔 being constants, the classical
solutions for the field 𝜙 in quadrature are

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[(𝑚 + 2)√
𝜂

2𝜔
∫ 𝑒

−3Ω
𝑑𝜏]

2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{√
2𝜂

𝜔
∫ 𝑒

−3Ω
𝑑𝜏} ,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln [𝑚√

𝜂

2𝜔
∫ 𝑒

−3Ω
𝑑𝜏] ,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

√2𝜂∫ 𝑒
−3Ω

𝑑𝜏

𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(20)

In the particular gauge 𝑁 = 24𝑒
3Ω, (20) is simplified to

(remember that 𝑑𝜏 = 𝑁(𝑡)𝑑𝑡)

𝜙 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[24 (𝑚 + 2)√
𝜂

2𝜔
𝑡]

2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{24√
2𝜂

𝜔
𝑡} ,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln [24𝑚√

𝜂

2𝜔
𝑡] ,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

24√2𝜂𝑡,

𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(21)

The complete solution to the quintessence scalar field 𝜙
depends strongly on the behavior of the scale factor of the
cosmologicalmodel under consideration and particular form
to the function 𝑓(𝜙); Bianchi type model appears mimetic in
the Ω function, as in (15) and (19), except when one chooses
a particular gauge which includes this function, as in (21).

In our particular case, it is evident that the contribution
of the scalar field is equivalent to a stiff fluid with a barotropic
equation of state 𝛾 = 1.This is an instance of the results of the
analysis of the energy-momentum tensor of a scalar field (17)
by Madsen [18] for general relativity with scalar matter and
by Pimentel [19] for the general scalar tensor theory. In both
works a free scalar field is equivalent to a stiff matter fluid. In
this way, we write action (3) in the usual form

𝐼 = ∫
Σ

√−𝑔(
𝑅

2
+L

Λ
+Lmat +L

𝜙
)𝑑

4
𝑥, (22)

and, consequently, the classical equivalence between the
two theories. We can infer that this correspondence is also
satisfied in the quantum regime, so we can use this structure
for the quantization program, where the ADM formalism is
well known for different classes of matter [20].

Thiswork is arranged as follows. In Section 2we construct
the Lagrangian andHamiltonian densities for the anisotropic
Bianchi type I cosmological model. In Section 3 we present
some ideas as the anisotropic cosmological model can obtain
its isotropization via the mean volume function and next we
obtain the classical exact solution for all values in the gamma
parameter. Finally, Section 3 is devoted to some final remarks.

2. Hamiltonian for the Bianchi Type I
Cosmological Model

Let us recall here the canonical formulation in the ADM
formalism of the diagonal Bianchi class Amodels.Themetric
has the form

𝑑𝑠
2
= −(𝑁𝑑𝑡)

2
+ 𝑒

2Ω(𝑡)
(𝑒

2𝛽(𝑡)
)
𝑖𝑗
𝜔
𝑖
𝜔
𝑗

= −𝑑𝜏
2
+ 𝑒

2Ω(𝑡)
(𝑒

2𝛽(𝑡)
)
𝑖𝑗
𝜔
𝑖
𝜔
𝑗
,

(23)
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whereΩ(𝑡) is a scalar,𝑁 is the lapse function, 𝛽
𝑖𝑗
(𝑡) is a 3 × 3

diagonal matrix, 𝛽
𝑖𝑗
= diag(𝛽

+
+ √3𝛽

−
, 𝛽

+
− √3𝛽

−
, −2𝛽

+
),

𝜔
𝑖 are one-forms that characterize each cosmological Bianchi

type model and obey 𝑑𝜔𝑖
=

2
𝐶

𝑖

𝑗𝑘
𝜔
𝑗
∧ 𝜔

𝑘, and 𝐶𝑖

𝑗𝑘
are the

structure constants of the corresponding invariance group.
For the Bianchi type I model we have

𝜔
1
= 𝑑𝑥

1
, 𝜔

2
= 𝑑𝑥

2
, 𝜔

3
= 𝑑𝑥

3
. (24)

The total Lagrangian density then for this metric becomes

LI = 𝑒
3Ω
[6
Ω̇

2

𝑁
− 6

̇𝛽
2

+

𝑁
− 6

̇𝛽
2

−

𝑁
+
𝑓 (𝜙)

2𝑁
̇𝜙
2
+ 2𝑁𝜌 + 2𝑁Λ] ,

(25)

using the standard definition of the momenta, Π
𝑞
𝜇 =

𝜕L/𝜕 ̇𝑞
𝜇, where 𝑞𝜇 = (Ω, 𝛽

+
, 𝛽

−
, 𝜙), we obtain

Π
Ω
=
12

𝑁
𝑒
3Ω
Ω̇, 󳨀→ Ω̇ =

𝑁

12
𝑒
−3Ω

Π
Ω
,

Π
+
= −

12

𝑁
𝑒
3Ω ̇𝛽

+
, 󳨀→ ̇𝛽

+
= −

𝑁

12
𝑒
−3Ω

Π
+
,

Π
−
= −

12

𝑁
𝑒
3Ω ̇𝛽

−
, 󳨀→ ̇𝛽

−
= −

𝑁

12
𝑒
−3Ω

Π
+
,

Π
𝜙
=
𝑓

𝑁
𝑒
3Ω ̇𝜙, 󳨀→ ̇𝜙 =

𝑁

𝑓
𝑒
−3Ω

Π
𝜙
,

(26)

and, introducing them into the Lagrangian density, we obtain
the canonical Lagrangian asLcanonical = Π𝑞

𝜇 ̇𝑞
𝜇
− 𝑁H,

Lcanonical

= Π
𝑞
𝜇 ̇𝑞

𝜇
−
𝑁

24
𝑒
−3Ω

{Π
2

Ω
+

12

𝑓 (𝜙)
Π

2

𝜙
− Π

2

+
− Π

2

−

− 48𝜇
𝛾
𝑒
−3(𝛾−1)Ω

− 48Λ𝑒
6Ω
} ,

(27)

where we have used energy-momentum conservation, the
law for a perfect fluid; 𝑇𝜇]

;] = 0, → 𝜌 = 𝜇
𝛾
𝑒
−3(𝛾+1)Ω; we

assumed an equation of state 𝑝 = 𝛾𝜌, so the corresponding
Hamiltonian density is

H
⊥
=
𝑒
−3Ω

24
(−Π

2

Ω
−

12

𝑓 (𝜙)
Π

2

𝜙
+ Π

2

+

+ Π
2

−
+ 𝑏

𝛾
𝑒
−3(𝛾−1)Ω

+ 48Λ𝑒
6Ω
) ,

(28)

with 𝑏
𝛾
= 48𝜇

𝛾
.

2.1. Classical Equations. The corresponding Einstein field
equations (16a) and (16b) for the anisotropic cosmological
model Bianchi type I are the following (remember that the
prime 󸀠 is the derivative over the time 𝑑𝜏 = 𝑁𝑑𝑡):

3Ω
󸀠2
− 3𝛽

󸀠2

+
− 3𝛽

󸀠2

−
−
𝑓

4
𝜙
󸀠2
− 𝜌 − Λ = 0, 2Ω

󸀠󸀠

+ 3Ω
󸀠2
− 3Ω

󸀠
𝛽
󸀠

+
− 3√3Ω

󸀠
𝛽
󸀠

−
− 𝛽

󸀠󸀠

+
+ 3𝛽

󸀠2

+

− √3𝛽
󸀠󸀠

−
+ 3𝛽

󸀠2

−
+
𝑓

4
𝜙
󸀠2
+ 𝑝 − Λ = 0, 2Ω

󸀠󸀠

+ 3Ω
󸀠2
− 3Ω

󸀠
𝛽
󸀠

+
+ 3√3Ω

󸀠
𝛽
󸀠

−
− 𝛽

󸀠󸀠

+
+ 3𝛽

󸀠2

+

+ √3𝛽
󸀠󸀠

−
+ 3𝛽

󸀠2

−
+
𝑓

4
𝜙
󸀠2
+ 𝑝 − Λ = 0, 2Ω

󸀠󸀠

+ 3Ω
󸀠2
+ 6Ω

󸀠
𝛽
󸀠

+
+ 2𝛽

󸀠󸀠

+
+ 3𝛽

󸀠2

+
+ 3𝛽

󸀠2

−

+
𝑓

4
𝜙
󸀠2
+ 𝑝 − Λ = 0,

(29)

𝑓 (3Ω
󸀠
𝜙
󸀠
+ 𝜙

󸀠󸀠
) +

1

2

𝑑𝑓

𝑑𝜙
𝜙
󸀠2
= 0. (30)

The solution of this last equation was putted in (19),

1

2
𝑓 (𝜙) 𝜙

󸀠2
= 𝜂𝑒

−6Ω
, 󳨀→ ∫√𝑓 (𝜙)𝑑𝜙 = √2𝜂∫ 𝑒

−3Ω(𝜏)
𝑑𝜏.

(31)

The combination between the second and third equations
gives us the solution for the anisotropic function 𝛽

−
; also the

sum of third and fourth equations, putting the 𝛽
−
solution,

gives us the form of the 𝛽
+
function,

𝛽
±
(𝜏) = 𝑎

±
∫ 𝑒

−3Ω(𝜏)
𝑑𝜏, (32)

where 𝑎
±
are integration constants. So, (29) are rewritten as

3Ω
󸀠2
= 3𝑐

1
𝑒
−6Ω

+ 𝜇
𝛾
𝑒
−3(𝛾+1)Ω

+ Λ, 𝑐
1
= 𝑎

2

+
+ 𝑎

2

−
+
𝜂

6
,

2Ω
󸀠󸀠
+ 3Ω

󸀠2
+ 3𝛽

󸀠2

+
+ 3𝛽

󸀠2

−
+
𝑓

4
𝜙
󸀠2
+ 𝑝 − Λ = 0.

(33)

2.2. Isotropization. The current observations of the cosmic
background radiation set a very stringent limit to the
anisotropy of the universe [21]; therefore it is important
to consider the anisotropy of the solutions. Recalling the
Friedmann equation (constraint equation),

3Ω
󸀠2
− 3𝛽

󸀠2

+
− 3𝛽

󸀠2

−
−
𝑓

4
𝜙
󸀠2
− 𝜌 − Λ = 0, (34)

we can see that isotropization is achieved when the terms
with 𝛽󸀠2

±
go to zero or are negligible with respect to the other

terms in the differential equation.We find in the literature the
criteria for isotropization, among others, (𝛽󸀠2

+
+𝛽

󸀠2

−
)/𝐻

2
→ 0,

(𝛽
󸀠2

+
+𝛽

󸀠2

−
)/𝜌 → 0, that are consistent with our above remark.

In the present case the comparison with the density should
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include the contribution of the scalar field. We define an
anisotropic density 𝜌

𝑎
that is proportional to the shear scalar:

𝜌
𝑎
= 𝛽

󸀠2

+
+ 𝛽

󸀠2

−
(35)

and will compare it with 𝜌
𝛾
, 𝜌

𝜙
, and Ω󸀠2. From the Hamilton

Jacobi analysis we know that

𝜌
𝑎
∼ 𝑒

−6Ω
, 𝜌

𝜙
∼ 𝑒

−6Ω
,

Ω
󸀠2
∼ 48Λ + 𝜅

Ω

2
𝑒
−6Ω

+ 𝑏
𝛾
𝑒
−3(1+𝛾)Ω

(36)

and the ratios are
𝜌
𝑎

𝜌
𝜙

∼ constant,
𝜌
𝑎

𝜌
𝛾

∼ 𝑒
3Ω(𝛾−1)

,

𝜌
𝑎

Ω󸀠2
∼

1

𝜅
Ω

2 + 48Λ𝑒6Ω + 𝑏
𝛾
𝑒3(1−𝛾)Ω

.

(37)

Here we see that for expanding a universe the anisotropic
density is dominated by the fluid density (with the exception
of the stiff fluid) or by the Ω󸀠2 term and then at late times
the isotropization is obtained if the expansion goes to infinity.
Hence it is necessary to determine when we have an ever
expanding universe. Equation (34) in the new variable 𝑉 =

𝑒
3Ω is

16𝑉
󸀠2
− 𝑏

𝛾
𝑉

1−𝛾
− 48Λ𝑉

2
= 𝜅

Ω

2
, 𝜅

Ω

2
= 𝜅

+

2
+ 𝜅

−

2
+ 𝜅

𝜙

2
.

(38)

That is equivalent to the equation of motion in the
coordinate 𝑉 of a particle under the potential 𝑈 with energy
𝐸 = 𝜅

Ω

2, where

𝑈 (𝑉) = −𝑏
𝛾
𝑉

1−𝛾
− 48Λ𝑉

2
. (39)

We can now have a qualitative idea of the different solutions
from energy diagrams. We assume that 𝑏

𝛾
is nonnegative

since it is proportional to the energy density of the fluid. On
the other hand,Λ and 𝜅

Ω

2 are real and can take positive, null,
or negative values.

FromFigure 1 that is qualitatively correct for 𝛾 ̸= 1, we see
that for negative Λ all the expanding solutions will recollapse
eventually, regardless of the sign of 𝜅

Ω

2. For positive Λ

an expanding solution will expand forever. We also note
that, when 𝜅

Ω

2
< 0, that is, when the ghost contribution

is dominant, there are contracting solutions that reach a
minimum and then expand forever; these solutions do not
have a big bang singularity.

2.2.1. Radiation Case,G = 𝑋
2. Reproducing the set of equa-

tion for this case, we have the fact that the Friedmann-like
equation is

3Ω
󸀠2
− 3𝛽

󸀠2

+
− 3𝛽

󸀠2

−
−
3

4
𝜙
󸀠4
− 𝜌 − Λ = 0, (40)

and, making the same analysis that is in the previous case, we
have

3Ω
󸀠2
= 3𝑐

1
𝑒
−6Ω

+ 3𝜙
1
𝑒
−4Ω

+ 𝜇
𝛾
𝑒
−3(𝛾+1)Ω

+ Λ,

𝑐
1
= 𝑎

2

+
+ 𝑎

2

−
.

(41)

Λ < 0

Λ > 0

𝜅
2

Ω
> 0

𝜅
2

Ω
< 0

Figure 1: Plot of (39), considering different classes of total energy,
in the 𝜅

Ω

2 parameter. Also, we include two branches in the cosmo-
logical constant.

Also the relation between the anisotropic function 𝛽
±
and

(32) is satisfied. In the last equation we have used (14).
Also, we can follow the same structure for the matter case

and, following the Hamilton Jacobi analysis, we know that

𝜌
𝑎
∼ 𝑒

−6Ω
, 𝜌

𝜙
∼ 𝑒

−4Ω
,

Ω
󸀠2
∼ 48Λ + 𝜙

1
𝑒
−4Ω

+ 𝜅
Ω

2
𝑒
−6Ω

+ 𝑏
𝛾
𝑒
−3(1+𝛾)Ω

(42)

and the corresponding ratios are

𝜌
𝑎

𝜌
𝜙

∼ 𝑒
−2Ω

,
𝜌
𝑎

𝜌
𝛾

∼ 𝑒
3Ω(𝛾−1)

,

𝜌
𝑎

Ω󸀠2
∼

1

𝜅
Ω

2 + 48Λ𝑒6Ω + 𝜙
1
𝑒2Ω + 𝑏

𝛾
𝑒3(1−𝛾)Ω

.

(43)

Hence it is necessary to determine when we have an ever
expanding universe. Equation (41) in the new variable 𝑉 =

𝑒
3Ω

16𝑉
󸀠2
− 𝑏

𝛾
𝑉

1−𝛾
− 48Λ𝑉

2
− 𝑐𝑉

2/3
= 𝐸

Ω

2
,

𝐸
Ω

2
= 𝜅

+

2
+ 𝜅

−

2
.

(44)

That is equivalent to the equation of motion in the
coordinate 𝑉 of a particle under the potential 𝑈 with energy
𝐸 = 𝐸

Ω

2, where

𝑈 (𝑉) = −𝑏
𝛾
𝑉

1−𝛾
− 48Λ𝑉

2
− 𝑐𝑉

2/3
. (45)

For this case, the qualitative analysis is the samewhenG = 𝑋.
In the following we obtain exact solutions in order to give

the volume function 𝑉 to each case toG = 𝑋.

2.3. Exact Classical Solutions. In order to find the solutions
for the remaining minisuperspace variables we employ the
Einstein-Hamilton-Jacobi equation, which arises by making
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the identification 𝜕𝑆(Ω, 𝛽
±
, 𝜙)/𝜕𝑞

𝜇
= Π

𝜇
in the Hamiltonian

constraintH
⊥
= 0, which results in

(
𝜕𝑆

𝜕Ω
)

2

− (
𝜕𝑆

𝜕𝛽
+

)

2

− (
𝜕𝑆

𝜕𝛽
−

)

2

+
12

𝑓 (𝜙)
(
𝜕𝑆

𝜕𝜙
)

2

− 𝑏
𝛾
𝑒
3Ω(1−𝛾)

− 48Λ𝑒
6Ω

= 0.

(46)

In order to solve the above equation, we assume a solution of
the form 𝑆(Ω, 𝛽

±
, 𝜙) = 𝑆

1
(Ω) + 𝑆

2
(𝛽

+
) + 𝑆

3
(𝛽

−
) + 𝑆

4
(𝜙) which

results in the following set of ordinary differential equations:

(
𝑑𝑆

1

𝑑Ω
)

2

− (𝑏
𝛾
𝑒
−3(𝛾−1)Ω

+ 48Λ𝑒
6Ω
+ 𝜅

Ω

2
) = 0,

(
𝑑𝑆

2

𝑑𝛽
+

)

2

− 𝜅
+

2
= 0,

(
𝑑𝑆

3

𝑑𝛽
−

)

2

− 𝜅
−

2
= 0,

(47)

12

𝑓 (𝜙)
(
𝑑𝑆

4

𝑑𝜙
)

2

− 𝜅
𝜙

2
= 0. (48)

Here the 𝜅
𝑖
are separation constants satisfying the relation

𝜅
Ω

2
= 𝜅

+

2
+ 𝜅

−

2
+ 𝜅

𝜙

2, 𝜅
±
are real, 𝜅

𝜙

2 should have the
same signs as 𝑓(𝜙), and for consistency with (19) we have
𝜅
𝜙

2
= 24𝜂. Recalling the expressions for the momenta we

can obtain solutions for equations (47)–(48) in quadrature;
in particular

Δ𝜏 = 12∫
𝑑Ω

√48Λ + 𝜅
Ω

2𝑒−6Ω + 𝑏
𝛾
𝑒−3(1+𝛾)Ω

, (49)

Δ𝛽
±
= ∓

𝜅
±

12
∫ 𝑒

−3Ω(𝜏)
𝑑𝜏. (50)

We already know the solution for (48). As can be seen
from (50), in order to obtain solutions for 𝛽

±
one needs to

find a solution forΩ, which can be obtained from (49).
Equation (49) does not have a general solution; however,

it is possible to find solutions for particular values of the
barotropic parameter 𝛾 with Λ ̸= 0.

(1) Λ = 0 and 𝛾 ̸= 1. Equation (49) can be written as

𝑑𝜏 = 12
𝑒
3Ω
𝑑Ω

√𝜅
Ω

2 + 𝑏
𝛾
𝑒−3Ω(𝛾−1)

. (51)

When we consider the time transformations 𝑑𝜏 = 𝑒
3𝛾Ω

𝑑𝑇,
and the change of variable 𝑢 = 𝜅

Ω

2
+𝑏

𝛾
𝑒
−3(𝛾−1)Ω, this equation

has the solution

Ω (𝑇) = ln [𝜃
𝛾
𝑇
2
+ 𝛿

𝛾
𝑇]

−1/3(𝛾−1)

, (52)

where 𝜃
𝛾
= ((𝛾 − 1)/8)

2
𝑏
𝛾
and 𝛿

𝛾
= −√𝜅

Ω

2((𝛾 − 1)/4). With
this, the time transformation becomes

𝑑𝜏 = [𝜃
𝛾
𝑇
2
+ 𝛿

𝛾
𝑇]

−𝛾/(𝛾−1)

𝑑𝑇. (53)

And the closed form is [22]

𝜏 =
(1 − 𝛾)

𝛿
𝛾

[𝜃
𝛾
𝑇
2
+ 𝛿

𝛾
𝑇]

1/(1−𝛾)

×
2𝐹1

(1, −
2

𝛾 − 1
;
𝛾 − 2

𝛾 − 1
; −
𝑇𝜃

𝛾

𝛿
𝛾

) ,

(54)

where
2𝐹1

is a hypergeometric function. We also have

∫ 𝑒
−3Ω

𝑑𝜏 =
1

𝛿
𝛾

ln[ 𝑇

𝜃
𝛾
𝑇 + 𝛿

𝛾

] . (55)

The anisotropy functions and the scalar field are given by

Δ𝛽
±
= ∓

𝜅
±

12𝛿
𝛾

ln[ 𝑇

𝜃
𝛾
𝑇 + 𝛿

𝛾

] ,

𝜙 (𝑇) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[(𝑚 + 2)√
𝜂

2𝜔

1

𝛿
𝛾

ln[ 𝑇

𝜃
𝛾
𝑇 + 𝛿

𝛾

]]

2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{√
2𝜂

𝜔

1

𝛿
𝛾

ln[ 𝑇

𝜃
𝛾
𝑇 + 𝛿

𝛾

]} ,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[𝑚√

𝜂

2𝜔

1

𝛿
𝛾

ln[ 𝑇

𝜃
𝛾
𝑇 + 𝛿

𝛾

]] ,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

√2𝜂
1

𝛿
𝛾

ln[ 𝑇

𝜃
𝛾
𝑇 + 𝛿

𝛾

] ,

𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(56)

As a concrete example we consider the particular value 𝛾 = 0
and then 𝜏 = 𝑇 andΩ becomes

Ω (𝜏) = ln[[

[

3

4
𝜇
0
𝑇
2
+

√𝜅
Ω

2

4
𝑇
]
]

]

1/3

,

󳨐⇒ 𝑒
3Ω

=
3

4
𝜇
0
𝑇
2
+

√𝜅
Ω

2

4
𝑇.

(57)

If isotropization is possible, this volume function would not
make it quick, and the integral becomes

∫ 𝑒
−3Ω

𝑑𝜏 =
4

√𝜅
Ω

2

ln[[

[

𝜏

(√𝜅
Ω

2/4) + (3/4) 𝜇
0
𝜏

]
]

]

. (58)
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So, the classical solutions for the anisotropic function 𝛽
±
and

𝜙 field are

Δ𝛽
±
= ∓

𝜅
±

3√𝜅
Ω

2

ln[[

[

𝜏

(√𝜅
Ω

2/4) + (3/4) 𝜇
0
𝜏

]
]

]

,

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[(𝑚 + 2)√
𝜂

2𝜔
ln[ 𝜏

(√𝜅
Ω

2/4) + (3/4) 𝜇
0
𝜏
]]

2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{√
2𝜂

𝜔
ln[ 𝜏

(√𝜅
Ω

2/4) + (3/4) 𝜇
0
𝜏
]} ,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[𝑚√

𝜂

2𝜔
ln[ 𝜏

(√𝜅
Ω

2/4) + (3/4) 𝜇
0
𝜏
]] ,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

√2𝜂
4

√𝜅
Ω

2
ln[ 𝜏

(√𝜅
Ω

2/4) + (3/4) 𝜇
0
𝜏
] ,

𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(59)

(2) Λ = 0 and 𝛾 = 1. In this case (49) is

Δ𝜏 = ∫
12

√𝑏
2
𝑒−6Ω

𝑑Ω (60)

with 𝑏
2
= 𝜅

Ω

2
+ 48𝜇

1
that we assume positive. By integrating

we obtain

𝑒
3Ω

=
√𝑏

2
Δ𝜏

4
. (61)

If isotropization is possible, this volume function would not
make it quick. For the anisotropic functions we have

Δ𝛽
±
= ∓

𝜅
±

12
∫ 𝑒

−3Ω(𝜏)
𝑑𝜏 = ∓𝜅

±

1

3√𝑏
2

ln (Δ𝜏) , (62)

and the scalar field is given by

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[(𝑚 + 2)√
𝜂

2𝜔

4

√𝑏
2

ln(Δ𝜏)]
2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{√
2𝜂

𝜔

4

√𝑏
2

ln (Δ𝜏)} ,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[𝑚√

𝜂

2𝜔

4

√𝑏
2

ln (Δ𝜏)] ,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

√2𝜂
4

√𝑏
2

ln (Δ𝜏) ,

𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(63)

(3) Λ ̸= 0 and 𝛾 = −1. Equation (49) has the form

Δ𝜏 = ∫
12

√𝜅
Ω

2𝑒−6Ω + 𝑏
3

𝑑Ω, (64)

where 𝑏
3
= 48𝜇

−1
+ 48Λ:

Δ𝜏 =
4

√𝑏
3

arccsch(√𝜅
Ω

2

𝑏
3

𝑒
−3Ω

) . (65)

Solving forΩ

Ω =
1

3
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

√
𝜅
Ω

2

𝑏
3

sinh(
√𝑏

3

4
Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (66)

The inverse volume function is

𝑒
−3Ω

= √
𝑏
3

𝜅
Ω

2
csch(

√𝑏
3

4
Δ𝜏) . (67)

If isotropization is possible, the corresponding volume func-
tion would make it quick and its integral becomes

∫ 𝑒
−3Ω

𝑑𝜏 =
4

√𝜅
Ω

2

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tanh(
√𝑏

3

4
Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (68)

And, as the anisotropic function is dependent on this integral,
so

Δ𝛽
±
(𝜏) = ±

𝜅
±

3√𝜅
Ω

2

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tanh(
√𝑏

3

4
Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (69)

Also, the field 𝜙 uses this integral (see (20)), and the corre-
sponding solutions become

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[− (𝑚 + 2)√
𝜂

2𝜔

4

√𝜅
Ω

2
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tanh(
√𝑏

3

4
Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{−√
2𝜂

𝜔

4

√𝜅
Ω

2
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tanh(
√𝑏

3

4
Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} ,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[−𝑚√

𝜂

2𝜔

4

√𝜅
Ω

2
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tanh(
√𝑏

3

4
Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

] ,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

−√2𝜂
4

√𝜅
Ω

2
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tanh(
√𝑏

3

4
Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝜙) = 𝜔, 𝑚 = 0

(70)
with the condition 𝜔 > 0.

Also we can consider the special case, when 𝑏
3
= 0 or

𝜇
−1
= −Λ:

Δ𝜏 =
4

√𝜅
Ω

2

𝑒
3Ω
,

Ω =
1

3
ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

√𝜅
Ω

2

4
Δ𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(71)
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We have the following expression:

𝑒
−3Ω

=
4

√𝜅
Ω

2

1

Δ𝜏
. (72)

The isotropization is possible for this case, because the
corresponding volume function would make it quick and its
integral becomes

∫ 𝑒
−3Ω

𝑑𝜏 =
4

√𝜅
Ω

2

ln |Δ𝜏| . (73)

So, the anisotropic function 𝛽
±
and the 𝜙 function become

for this case

Δ𝛽
±
(𝜏) = ∓

𝜅
±

3√𝜅
Ω

2

ln |Δ𝜏| ,

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[
[

[

(𝑚 + 2)√
𝜂

2𝜔

4

√𝜅
Ω

2

ln |Δ𝜏|]]

]

2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp
{{

{{

{

√
2𝜂

𝜔

4

√𝜅
Ω

2

ln |Δ𝜏|
}}

}}

}

,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[[

[

𝑚√
𝜂

2𝜔

4

√𝜅
Ω

2

ln |Δ𝜏|]]

]

,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

√2𝜂
4

√𝜅
Ω

2

ln |Δ𝜏| ,

𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(74)

(4) Λ ̸= 0 and 𝛾 = 0. For this case, (49) is

Δ𝜏 = ∫
12𝑒

3Ω

√𝜅
Ω

2 + 48𝜇
0
𝑒3Ω + 48Λ𝑒6Ω

𝑑Ω

=
1

√3Λ

× ln[
𝑏
0
+ 96Λ𝑒

3Ω

48Λ
+

1

2√3Λ
√𝜅

Ω

2 + 𝑏
0
𝑒3Ω + 48Λ𝑒6Ω]

(75)

with 𝑏
0
= 48𝜇

0
and Λ > 0.

The functionΩ becomes

Ω =
1

3
ln[[

[

12Λ(𝑒
√3ΛΔ𝜏

− (𝑏
0
/48Λ))

2

− 𝜅
Ω

2

48Λ𝑒
√3ΛΔ𝜏

]
]

]

(76)

and we have

𝑒
−3Ω

=
48Λ𝑒

√3ΛΔ𝜏

12Λ(𝑒
√3ΛΔ𝜏 − (𝑏

0
/48Λ))

2

− 𝜅
Ω

2

,

∫ 𝑒
−3Ω

𝑑𝜏 = −
8

√𝜅
Ω

2

arctanh(2√ 3Λ

𝜅
Ω

2
(−

𝑏
0

48Λ
+ 𝑒

√3ΛΔ𝜏
)) .

(77)

Also, the isotropization is possible, because the correspond-
ing volume function wouldmake it quick. For the anisotropic
function 𝛽

±
we have

Δ𝛽
±
(𝜏) = ±

2𝜅
±

3√𝜅
Ω

2

arctanh(2√ 3Λ

𝜅
Ω

2
(−

𝑏
0

48Λ
+ 𝑒

√3ΛΔ𝜏
))

(78)

and for the 𝜙 function

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

[
[

[

− (𝑚 + 2)√
𝜂

2𝜔

8

√𝜅
Ω

2

arctanh(2√ 3Λ

𝜅
Ω

2
(−

𝑏
0

48Λ
+ 𝑒

√3ΛΔ𝜏
))

]
]

]

2/(𝑚+2)

, 𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp
{{

{{

{

−√
2𝜂

𝜔

8

√𝜅
Ω

2

arctanh(2√ 3Λ

𝜅
Ω

2
(−

𝑏
0

48Λ
+ 𝑒

√3ΛΔ𝜏
))

}}

}}

}

, 𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[[

[

−𝑚√
𝜂

2𝜔

8

√𝜅
Ω

2

arctanh(2√ 3Λ

𝜅
Ω

2
(−

𝑏
0

48Λ
+ 𝑒

√3ΛΔ𝜏
))

]
]

]

, 𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

−√2𝜂
8

√𝜅
Ω

2

arctanh(2√ 3Λ

𝜅
Ω

2
(−

𝑏
0

48Λ
+ 𝑒

√3ΛΔ𝜏
)) , 𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(79)
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(5) Λ ̸= 0 and 𝛾 = 1. Equation (49) becomes

Δ𝜏 = ∫
12

√𝑏
4
𝑒−6Ω + 48Λ

𝑑Ω, (80)

where 𝑏
4

= 𝜅
Ω

2
+ 48𝜇

1
. In this case also we have two

possible solutions depending on the value of the cosmological
constant.

(i) Λ > 0.The solution becomes

Δ𝜏 =
1

√3Λ
arcsinh(4√3Λ

𝑏
4

𝑒
3Ω
) (81)

so the functionΩ is

Ω =
1

3
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

4
√
𝑏
4

3Λ
sinh (√3ΛΔ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑒
−3Ω

= 4√
3Λ

𝑏
4

csch (√3ΛΔ𝜏) ,

∫ 𝑒
−3Ω

𝑑𝜏 =
4

√𝑏
4

ln [tanh (√3ΛΔ𝜏)] .

(82)

For this case the isotropization is possible and the corre-
sponding volume function would make it quick. For the
anisotropic function 𝛽

±
we have

Δ𝛽
±
= ±

𝜅
±

3√𝑏
4

ln [tanh (√3ΛΔ𝜏)] (83)

and for the 𝜙 field

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

[−(𝑚 + 2)√
𝜂

2𝜔

4

√𝑏
4

ln [tanh (√3ΛΔ𝜏)]]
2/(𝑚+2)

,

𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{−√
2𝜂

𝜔

4

√𝑏
4

ln [tanh (√3ΛΔ𝜏)]} ,

𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[−𝑚√

𝜔𝜂

2𝜔

4

√𝑏
4

ln [tanh (√3ΛΔ𝜏)]] ,

𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

−√2𝜂
4

√𝑏
4

ln [tanh (√3ΛΔ𝜏)] ,

𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(84)

(ii) Λ < 0.The corresponding solutions are

Δ𝜏 = −
1

√3 |Λ|
arccos(4√3 |Λ|

𝑏
4

𝑒
3Ω
) . (85)

The functionΩ is

Ω =
1

3
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

4
√

𝑏
4

3 |Λ|
cos (√3 |Λ|Δ𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (86)

As the volume has an oscillatory behavior, the isotropization
does not yield for this case, and for completeness we calculate

𝑒
−3Ω

= 4√
3 |Λ|

𝑏
4

sec (√3 |Λ|Δ𝜏) ,

∫ 𝑒
−3Ω

𝑑𝜏 =
4

√𝑏4

ln 󵄨󵄨󵄨󵄨󵄨
sec (√3 |Λ|Δ𝜏) + tan (√3 |Λ|Δ𝜏)

󵄨󵄨󵄨󵄨󵄨

=
4

√𝑏4

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

cos ((√3 |Λ|/2) Δ𝜏) + sin ((√3 |Λ|/2) Δ𝜏)

cos ((√3 |Λ|/2) Δ𝜏) − sin (√3 |Λ|/2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(87)

The anisotropic function 𝛽
±
,

Δ𝛽
±
= ∓

𝜅
±

3√𝑏
4

ln 󵄨󵄨󵄨󵄨󵄨sec (√3 |Λ|Δ𝜏) + tan (√3 |Λ|Δ𝜏)󵄨󵄨󵄨󵄨󵄨 . (88)

And the 𝜙 field

𝜙 (𝜏) =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

[(𝑚 + 2)√
𝜂

2𝜔

4

√𝑏
4

ln 󵄨󵄨󵄨󵄨󵄨sec (√3|Λ|Δ𝜏) + tan (√3|Λ|Δ𝜏)󵄨󵄨󵄨󵄨󵄨]
2/(𝑚+2)

, 𝑓 (𝜙) = 𝜔𝜙
𝑚
, 𝑚 ̸= −2,

Exp{√
2𝜂

𝜔

4

√𝑏
4

ln 󵄨󵄨󵄨󵄨󵄨sec (√3 |Λ|Δ𝜏) + tan (√3 |Λ|Δ𝜏)󵄨󵄨󵄨󵄨󵄨} , 𝑓 (𝜙) = 𝜔𝜙
−2
, 𝑚 = −2,

2

𝑚
ln[𝑚√

𝜂

2𝜔

4

√𝑏
4

ln 󵄨󵄨󵄨󵄨󵄨sec (√3 |Λ|Δ𝜏) + tan (√3 |Λ|Δ𝜏)󵄨󵄨󵄨󵄨󵄨] , 𝑓 (𝜙) = 𝜔𝑒
𝑚𝜙
, 𝑚 ̸= 0,

√2𝜂
4

√𝑏
4

ln 󵄨󵄨󵄨󵄨󵄨sec (√3 |Λ|Δ𝜏) + tan (√3 |Λ|Δ𝜏)󵄨󵄨󵄨󵄨󵄨 , 𝑓 (𝜙) = 𝜔, 𝑚 = 0.

(89)
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3. Final Remarks

In this workwe present the study of the classical cosmological
anisotropic Bianchi type I in the K-essence formalism. In
previousworkmade byChimento andForte [16], they present
the possible isotropization of this model. Our goal in this
work is that we obtain the corresponding classical solutions
for a barotropic perfect fluid and cosmological term Λ which
mimics the scalar field in (1). In the case of Λ = 0 and 𝛾 ̸= 1

we obtain the solutions in closed form. With these solutions
we can validate our qualitative analysis on isotropization
of the cosmological model, implying that this occurs when
the volume is large in the corresponding time evolution.
So, only one solution does not present the large volume,
when Λ < 0 in stiff matter era in the ordinary matter
content. We include a qualitative analysis to Friedmann
equation when it is written as an equation for the volume
that is equivalent to the equation of motion of a particle
under a potential and we conclude the same about the
isotropization of this anisotropic model, considering the stiff
matter and radiation cases. In [17] the author shows from
the kinematic point of view the model when 𝐺(𝑋) is linear
(as in our case) and the particular value to the function
𝑓(𝜙), using our notation, and the quintessence scalar field
one driven by an exponential potential are the same, but
they are dynamically nonequivalent because the K-field and
the scalar potential are linked by the Einstein equation.
However our results contain other functions 𝑓(𝜙); then we
argued that explanation to the corresponding observational
data and the kinematic properties, since each formalism will
have big differences. All of these comments occur because
the complete solution to the quintessence scalar field 𝜙

depends strongly on the behavior of the scale factor of the
cosmologicalmodel under consideration and particular form
to the function 𝑓(𝜙); Bianchi type model appears mimetic
in the Ω function, as in (15) and (19), except when one
chooses a particular gauge which includes this function, as
in (21). In the quantum analysis for this model, considering
the scalar field, the solutions are similar to those found in the
Bianchi type IX cosmological model [23]; you can see (32).
For quantum radiation case, the resulting Wheeler-DeWitt
equation appears as fractionary differential equation, and the
results will be reported elsewhere.
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