67 research outputs found

    Toolbox for analyzing finite two-state trajectories

    Get PDF
    In many experiments, the aim is to deduce an underlying multi-substate on-off kinetic scheme (KS) from the statistical properties of a two-state trajectory. However, the mapping of a KS into a two-state trajectory leads to the loss of information about the KS, and so, in many cases, more than one KS can be associated with the data. We recently showed that the optimal way to solve this problem is to use canonical forms of reduced dimensions (RD). RD forms are on-off networks with connections only between substates of different states, where the connections can have non-exponential waiting time probability density functions (WT-PDFs). In theory, only a single RD form can be associated with the data. To utilize RD forms in the analysis of the data, a RD form should be associated with the data. Here, we give a toolbox for building a RD form from a finite two-state trajectory. The methods in the toolbox are based on known statistical methods in data analysis, combined with statistical methods and numerical algorithms designed specifically for the current problem. Our toolbox is self-contained - it builds a mechanism based only on the information it extracts from the data, and its implementation on the data is fast (analyzing a 10^6 cycle trajectory from a thirty-parameter mechanism takes a couple of hours on a PC with a 2.66 GHz processor). The toolbox is automated and is freely available for academic research upon electronic request

    On the relationships between kinetic schemes and two-state single molecule trajectories

    Full text link
    Trajectories of a signal that fluctuates between two states which originate from single molecule activities have become ubiquitous. Common examples are trajectories of ionic flux through individual membrane-channels, and of photon counts collected from diffusion, activity, and conformational changes of biopolymers. By analyzing the trajectory, one wishes to deduce the underlying mechanism, which is usually described by a multi-substate kinetic scheme. In previous works, we divided kinetic schemes that generate two-state trajectories into two types: reducible schemes and irreducible schemes. We showed that all the information in trajectories generated from reducible schemes is contained in the waiting time probability density functions (PDFs) of the two states. It follows that reducible schemes with the same waiting time PDFs are not distinguishable. In this work, we further characterize the topologies of kinetic schemes, now of irreducible schemes, and further study two-state trajectories from the two types of scheme. We suggest various methods for extracting information about the underlying kinetic scheme from the trajectory (e. g., calculate the binned successive waiting times PDF and analyze the ordered waiting times trajectory), and point out the advantages and disadvantages of each. We show that the binned successive waiting times PDF is not only more robust than other functions when analyzing finite trajectories, but contains, in most cases, more information about the underlying kinetic scheme than other functions in the limit of infinitely long trajectories. For some cases however, analyzing the ordered waiting times trajectory may supply unique information about the underlying kinetic scheme

    Insight into Resonant Activation in Discrete Systems

    Full text link
    The resonant activation phenomenon (RAP) in a discrete system is studied using the master equation formalism. We show that the RAP corresponds to a non-monotonic behavior of the frequency dependent first passage time probability density function (pdf). An analytical expression for the resonant frequency is introduced, which, together with numerical results, helps understand the RAP behavior in the space spanned by the transition rates for the case of reflecting and absorbing boundary conditions. The limited range of system parameters for which the RAP occurs is discussed. We show that a minimum and a maximum in the mean first passage time (MFPT) can be obtained when both boundaries are absorbing. Relationships to some biological systems are suggested.Comment: 5 pages, 5 figures, Phys. Rev. E., in pres

    Clustering in anomalous files of independent particles

    Full text link
    The dynamics of classical hard particles in a quasi one-dimensional channel were studied since the 1960s and used for explaining processes in chemistry, physics and biology and in applications. Here we show that in a previously un-described file made of anomalous, independent, particles (with jumping times taken from, {\psi}_{\alpha} (t) t^(-1-{\alpha}), 0<{\alpha}<1), particles form clusters. At steady state, the percentage of particles in clusters is about, \surd(1-{\alpha}^3), only for anomalous {\alpha}, characterizing the criticality of a phase transition. The asymptotic mean square displacement per particle in the file is about, log^2(t). We show numerically that this exciting phenomenon of a phase transition is very stable, and relate it with the mysterious phenomenon of rafts in biological membranes, and with regulation of biological channels.Comment: main text (13 pages, 4 figures), plus supplementary material (15 pages, 6 figures

    Translocation of a Single Stranded DNA Through a Conformationally Changing Nanopore

    Get PDF
    We investigate the translocation of a single stranded DNA through a pore which fluctuates between two conformations, using coupled master equations. The probability density function of the first passage times (FPT) of the translocation process is calculated, displaying a triple, double or mono peaked behavior, depending on the interconversion rates between the conformations, the applied electric field, and the initial conditions. The cumulative probability function of the FPT, in a field-free environment, is shown to have two regimes, characterized by fast and slow timescales. An analytical expression for the mean first passage time of the translocation process is derived, and provides, in addition to the interconversion rates, an extensive characterization of the translocation process. Relationships to experimental observations are discussed.Comment: 8 pages, 5 figures, Biophys. J., in pres

    Comment on 'Path Summation Formulation of the Master Equation'

    Full text link
    Comment on 'Path Summation Formulation of the Master Equation

    Path probability density functions for semi-Markovian random walks

    Full text link
    In random walks, the path representation of the Green's function is an infinite sum over the length of path probability density functions (PDFs). Here we derive and solve, in Laplace space, the recursion relation for the n order path PDF for any arbitrarily inhomogeneous semi-Markovian random walk in a one-dimensional (1D) chain of L states. The recursion relation relates the n order path PDF to L/2 (round towards zero for an odd L) shorter path PDFs, and has n independent coefficients that obey a universal formula. The z transform of the recursion relation straightforwardly gives the generating function for path PDFs, from which we obtain the Green's function of the random walk, and derive an explicit expression for any path PDF of the random walk. These expressions give the most detailed description of arbitrarily inhomogeneous semi-Markovian random walks in 1D

    Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach

    Full text link
    We study voltage driven translocation of a single stranded (ss) DNA through a membrane channel. Our model, based on a master equation (ME) approach, investigates the probability density function (pdf) of the translocation times, and shows that it can be either double or mono-peaked, depending on the system parameters. We show that the most probable translocation time is proportional to the polymer length, and inversely proportional to the first or second power of the voltage, depending on the initial conditions. The model recovers experimental observations on hetro-polymers when using their properties inside the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR

    Semi-Markov Graph Dynamics

    Get PDF
    In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed graphs or even weighted graphs.Comment: 25 pages, 4 figures, submitted to PLoS-ON

    Utilizing the information content in two-state trajectories

    Full text link
    The signal from many single molecule experiments monitoring molecular processes, such as enzyme turnover via fluorescence and opening and closing of ion channel via the flux of ions, consists of a time series of stochastic on and off (or open and closed) periods, termed a two-state trajectory. This signal reflects the dynamics in the underlying multi-substate on-off kinetic scheme (KS) of the process. The determination of the underlying KS is difficult and sometimes even impossible due to the loss of information in the mapping of the mutli dimensional KS onto two dimensions. Here we introduce a new procedure that efficiently and optimally relates the signal to all equivalent underlying KSs. This procedure partitions the space of KSs into canonical (unique) forms that can handle any KS, and obtains the topology and other details of the canonical form from the data without the need for fitting. Also established are relationships between the data and the topology of the canonical form to the on-off connectivity of a KS. The suggested canonical forms constitute a powerful tool in discriminating between KSs. Based on our approach, the upper bound on the information content in two state trajectories is determined.Comment: The file contains: main text (+4 figures), supporting information (+9 figures), poster (1 page
    • …
    corecore