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ABSTRACT We investigate the translocation of a single-stranded DNA through a pore which fluctuates between two
conformations, using coupled master equations. The probability density function of the first passage times of the translocation
process is calculated, displaying a triple-, double-, or monopeaked behavior, depending on the interconversion rates between the
conformations, the applied electric field, and the initial conditions. The cumulative probability function of the first passage times, in
a field-free environment, is shown to have two regimes, characterized by fast and slow timescales. An analytical expression for
the mean first passage time of the translocation process is derived, and provides, in addition to the interconversion rates, an
extensive characterization of the translocation process. Relationships to experimental observations are discussed.

INTRODUCTION

Translocation of biopolymers through a membrane pore

occurs in a variety of biological processes, such as gene ex-

pression in eukaryotic cells (Alberts et al., 1994), conjuga-

tion between prokaryotic cells, and virus infection (Madigan

et al., 1997). The importance of translocation in biological

systems and its applications have been the motivation for

recent theoretical and experimental work on this topic. In

experiments one usually measures the time it takes one

voltage-driven single-stranded DNA (ssDNA) to translocate

through the a-hemolysin channel of a known structure (Song

et al., 1996). Since ssDNA is negatively charged (each

monomer of length b has an effective charge of zq, where q is
the electron charge, and z, i.e., 0, z, 1, is controlled by the

solution pH and strength), when applying a voltage the

polymer is subject to a driving force while passing through

the transmembrane pore part (TPP) from the negative (cis)
side to the positive (trans) side; for an illustration of the

process, see Fig. 4 in Meller (2003). Because the presence of

the ssDNA in the TPP blocks the cross-TPP current, one can

deduce the first passage times (FPT) probability density

function (pdf), F(t), from the current blockade duration times

(Kasianowicz et al., 1996; Meller et al., 2001).

Experiments by Kasianowicz et al. (1996) show F(t) with
three peaks. It was suggested that the short-time peak

represents the nontranslocated events, whereas the other two,

longer-time peaks, represent translocation events of different

ssDNA orientations. In addition, the times that maximize the

translocation peaks were shown to be proportional to the

polymer length and inversely proportional to the applied

field. In experiments by Meller et al. (2001), F(t) was shown
to be monopeaked, with a corresponding maximizing time

characterized by an inverse quadratic field dependence.

More recently, Bates et al. (2003) measured the FPT

cumulative probability density function (cdf), which is the

probability to exit the channel until time t, GðtÞ ¼ R t0 FðsÞds
in a field-free environment. G(t) was approximated by two

well-separated timescales with the ratio of 1:20.

In previous theoretical works, the translocation of

a ssDNA through a nanopore was described by statistical

models that focused on calculating the free energy of the

process as a function of the translocation state. The free

energy contained terms representing the entropy and the

chemical potential of the polymer parts on both sides of a

zero-thickness membrane (Muthukumar, 1999; Sung and

Park, 1996). The role of the membrane thickness was studied

by Ambjornsson et al. (2002), Slonika and Kolomeisky

(2003), and Flomenbom and Klafter (2003). The effects

of the sequence of the ssDNA on the translocation were

considered by Flomenbom and Klafter (2003), Kafri et al.

(2004), and Slutsky et al. (2004). The obtained free energy

was mainly used to calculate the mean first passage time

(MFPT), which asymptotically was found to scale linearly

with the polymer length for a field-biased process. This is the

expected MFPT dependence of a Markovian-biased random

walk in a finite interval (Redner, 2001).

A different approach was suggested by Lubensky and

Nelson (2001), and further developed by Berezhkovskii and

Gopich (2003), where a diffusion-convection equation was

used to describe the translocation process, under the

assumption that the polymer parts outside the membrane

hardly affect the translocation. Berezhkovskii and Gopich

(2003) showed that by changing the cis absorbing end to be

partially absorbing, the monopeaked F(t) obtained by

Lubensky and Nelson (2001) could change to a superposition

of a decaying nontranslocation pdf and a peaked trans-

location pdf. Chuang et al. (2001) studied a field-free

translocation which they described by Rouse dynamics,

which was shown to yield anomalous scaling laws of the
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MFPT. Using the fractional Fokker-Planck equation,

Metzler and Klafter (2003) suggested an explanation for

the slow relaxation time of the experimentally observed G(t).
We have shown by using a master equation (ME) approach

that F(t) can be double- or monopeaked, depending on the

applied field and on the initial condition (Flomenbom and

Klafter, 2003).

In the various approaches summarized above the structure

of the pore was taken to be rigid, namely, governed by

a single conformation. Although it is known that the

a-hemolysin channel has a rigid structure that allows its

crystallization (Song et al., 1996), during the translocation of

a long polymer (larger than the pore length) which is almost

as wide as the channel at some cross sections along it, small

fluctuations in the channel structure can occur which may not

be relevant to ion movement but which are important to

ssDNA translocation. This gives rise to a more complex

process than what has been assumed so far. In this work we

relax the assumption of a single pore conformation and

introduce a second conformation coupled to the first one. The

process then takes place in an effectively two-dimensional

system, where one dimension represents the translocation

itself, and the second dimension represents the structural

fluctuations. This picture is richer and is more realistic, since

small structural changes in physiological conditions are

known to occur in large biomolecules, certainly during

interaction with other biomolecules.

The function that best represents the translocation process

is F(t) (or its integral G(t)). Through the dependence of F(t)
on the system parameters we learn about the important

degrees of freedom which participate in the translocation

process. The characteristics of F(t) are the dependence of its
shape, moments, and times that maximize its peaks on the

system parameters. Using the generalized model that takes

into account fluctuations in the pore structure, we calculate

F(t) and show that it can display one, two, or three peaks,

depending on the applied voltage, the temperature, and the

interconversion rates between the two conformations.

Analytical expressions for the MFPT are derived and related

to the experimental findings. In addition, we calculate the

cumulative probability G(t) in the field-free limit, and show

that it also provides valuable information about the system

parameters. Thus, these tools help in gaining insight into the

translocation of a polymer through a narrow pore, and in

explaining the diversity of the experimental observations

(Kasianowicz et al., 1996; Meller et al., 2001).

THEORETICAL MODELING

Basic model

The basic model we use to describe the translocation relies

on a one-dimensional process. To apply this simplification,

we map the three-dimensional translocation process onto

a discrete one-dimensional space containing n(¼ N 1 d–1)

states separated from each other by a unit length b. The
translocation takes place within a TPP of a length that

corresponds to d-monomers. An n-state ME is introduced to

describe the translocation of an N-monomer-long ssDNA

subject to an external voltage V and temperature T. The
occupation pdf of the j-state is ½P~ðtÞ�j ¼ PjðtÞ; where the

state index j determines the number of monomers on each

side of the membrane and within the TPP (mj). Pj(t) satisfies
the equation of motion

@PjðtÞ=@t ¼ aj1 1;jPj11ðtÞ1 aj�1;jPj�1ðtÞ
� ðaj;j11 1 aj;j�1ÞPjðtÞ; (1)

under absorbing boundary conditions on both sides of the

membrane (the polymer can exit the TPP on both sides).

Equation 1 can be written in a matrix representation as

@P~ðtÞ=@t ¼ AP~ðtÞ; (2)

where the propagation matrix A is a tridiagonal matrix that

contains information about the transitions between states in

terms of rate constants, aj,j61, which is given by

aj;j61 ¼ kjpj;j61: (3)

Here, kj is the rate to perform a step, pj,j–1 (pj,j11) is the

probability to move one state from state j to the trans (cis)
side, and pj,j11 1 pj,j–1 ¼ 1. The expression for kj is taken to

be similar to the longest bulk relaxation time of a polymer

(Doi and Edwards, 1986),

kj ¼ 1=ðbjpb2mm
j Þ[R=m

m
j ; b

�1 [ kBT; (4)

with two exceptions: the parameter jp represents the ssDNA-
TPP interaction and cannot be calculated from the Stokes

relation, and m serves as a measure of the polymer stiffness

inside the confined volume of the TPP, and is bounded by the

conventional values (Doi and Edwards, 1986) of 0 # m #
1.5.

Assuming a quasiequilibrium process, which justifies

applying the detailed balance condition, and by using the

approximation aj,j�1/aj�1,j � pj,j�1/(1�pj,j�1), the probabil-

ity pj,j�1 is found to be

Pj;j�1 ¼ ð11 ebDEjÞ�1
: (5)

The free energy difference between states, DEj¼ Ej�1�Ej,

is computed considering three contributions: electrostatic,

entropic, and an average attractive interaction energy

between the ssDNA and the pore. More explicitly, bDEj is

given by bDEj ¼ bDEj
p 1 dj, where bDEj

p # 0 represents

the effect of the field which directs toward the trans-side and
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dj . 0 (for j. d) represents an effective directionality to the
cis-side, which originates from the entropic factors and the

average attractive interaction energy between the ssDNA and

the pore. For a more detailed discussion see Flomenbom and

Klafter (2003).

Several features emerge from the simple one-dimensional

model. For homopolymers, poly-dnu, where nu stands for

the nucleotide type, we estimate jp(Anu) � 10�4meVs/nm2,

jp(Cnu) ¼ jp(Tnu) ¼ jp(Anu)/3 and m(Cnu) ¼ 1, m(Anu) ¼
1.14, m(Tnu) ¼ 1.28. Here Anu, Cnu, and Tnu stand for

adenine, cytosine, and thymine nucleotides, respectively.

Interestingly, jp is three orders-of-magnitude larger than the

bulk friction constant, which is consistent with the role as-

signed to jp to represent the interaction between the poly-

mer and the channel.

In addition, from the expressions for bDEj and pj,j�1, the

important parameter V/VC [ bzjqjV(1 1 1/d) comes out

naturally. This ratio determines the directionality of the trans-

location, and, in particular, for V/VC. 1 there is a bias toward

the trans-side of the membrane.

Translocation through a conformationally
changing pore

A more realistic description of the translocation can be

obtained by taking into consideration fluctuations in the TPP,

either spontaneous or interaction-induced. Accordingly, we

introduce an additional pore conformation which is repre-

sented by the propagation matrix B. The changes in the pore

conformation between A and B are controlled by the inter-

conversion rates, vA and vB. The value vA (vB) is the rate of

the change from the A (B) to the B (A) pore conformation.

The physical picture of the process is that when the pore

conformation changes, a different environment is created for

the ssDNA occupying the TPP. This implies a change in jp
and m. For a large polymer, N. d, we take B� lA, where l
is a (dimensionless) parameter that represents the effect of

the conformational change on jp and m (as stems from Eq. 4

and the relationship B � lA). The parameter l may be

interpreted as a measure of the effective available volume

created within the TPP when the amino acid residues

protruding the TPP change their positions.

The equations of motion of the ssDNA translocation

through the fluctuating pore, written in matrix representation,

are

@

@t
P~ðt;AÞ
P~ðt;BÞ

� �
¼ A�vA vB

vA B�vB

� �
P~ðt;AÞ
P~ðt;BÞ

� �
; (6)

where P~ðt; iÞ; i ¼ A;B is the occupation pdf vector of

conformation i, vi ¼ viI, and I is the unit matrix of n
dimensions. For the reader’s convenience, Table 1, which

summarizes the important parameters of the model and the

calculated entities, is given in Appendix E.

As a general note we refer to the form of Eq. 6, which was

used to study the resonant activation phenomenon (Bar-Haim

and Klafter, 1999). This phenomenon, which was first

reported by Doering and Gadoua (1992), is the occurrence

of a global minimum in the MFPT as a function of the inter-

conversion rate for a system inwhichvA¼vB. Because of the

assumption B ¼ lA, the system investigated here cannot

exhibit this phenomenon (Flomenbom and Klafter, 2004).

DENSITY OF TRANSLOCATION TIMES

Parameter tuning

To study the translocation of ssDNA through a fluctuating

pore, we start by computing F(t). Formally, F(t) is defined by

FðtÞ ¼ @ð1� SðtÞÞ=@t: (7)

Here, S(t) is the survival probability; namely, the probability

to still have at least one monomer in the pore, and which is

given by summing the elements of the vector that solves Eq.

6 (see Appendix A for details). Using the values of jp and m
from the single conformation model, we examine in this

subsection the effect of the parameters l, vA, and vB on F(t).
First, we check the effect of l on F(t) for several limiting

cases. For l¼ 0movement in any direction occurs only under

the A conformation environment. The B conformation traps

the polymer for a period of time governed by the inter-

conversion rates. For l ¼ 1, namely, B ¼ A, the environ-

mental changes do not affect the translocation, and the process

reduces to a translocation through a single conformation. For

l. 1 the environmental changes enhance the process. In this

article we restrict ourselves to the range 0 # l # 1.

The picture is less intuitive for intermediate values of l.
Fig. 1 shows that by choosing l properly, three peaks in F(t)
can be obtained. In particular, as shown in the inset of Fig. 1,

the range of l-values for which F(t) exhibits three distinct

peaks is 0.10 # l # 0.30. For the single conformation case

we found that F(t) can be either mono- or doublepeaked,

depending on V/VC, and on the initial state of the

translocation x. The short time peak represents the non-

translocated events, whereas the long time peak represents

the translocation events. The generalization to two pore con-

formations may yield two translocation peaks in addition to a

short time nontranslocation peak. Indeed, Fig. 1 supports the

expected behavior for the limiting l-values, and shows that

as l / 1, F(t) possess only one translocation peak, as well

as for l / 0, where the B conformation peak spreads out

toward larger times, which results in its disappearance.

Although Fig. 1 is obtained for a given value of the

interconversion rates, our explanations regarding the F(t)
behavior for the limiting cases l ¼ 1, 0 are valid for any

system conditions. This is demonstrated by calculating the

MFPT (Appendices B and D). In Appendix B we show that

when l ¼ 1, the MFPT of the two-conformation model
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reduces to that of the single conformation model. In

Appendix D we show that for l ¼ 0, the B conformation

contribution for the MFPT is a term which is inversely

proportional to the interconversion rate, v�1
B :

Therefore, l serves as a tuning parameter that leads to

either one or two actual translocation peaks in F(t). The
question of interest is how l depends on the system

parameters. We assume a small field perturbation in the

regime of biological interest (0 # V/VC # 3, using VC � 50

mV; Flomenbom and Klafter, 2003), so that l(V) follows
l� l0 1 V/Vl, and keeping l(V)# 1. Here l0 and Vl might

be expansion coefficients, where l � 1 is implied from

recent experiments (Bates et al., 2003), as we discuss later.

The process can be viewed in the following way: as the

voltage increases, those residues of amino acids that protrude

the TPP, creating obstacles for the translocating ssDNA,

clear the way. Although the l-dependence on the voltage is

assumed here, its dependence on other system parameters

(e.g., temperature and pH) is unknown and is folded into Vl.

To check how interconversion rates affect F(t), it is con-
venient to define two dimensionless parameters, v [ vA/vB

and vB/k (or vA/k), where k is the dominant rate of the A con-

formation for a sufficiently large N, k ¼ R/dm. The first ratio
sets the dominance of a given conformation over its counter-

part; e.g., forv� 1most of the translocation events take place

in the A conformation. The second ratio gives an estimate of

the number of moves in a given conformation before a

change in thepore structure occurs, and thus relates the ssDNA

dynamics to the structural changes dynamics.

As shown in Fig. 2 and its inset, F(t) exhibits two peaks

corresponding to actual translocation only when v � 1. For

v � 1 and v � 1 only one peak corresponding to an actual

translocation survives. For all cases there is a peak

representing nontranslocation events. In addition, we find

that for two translocation peaks to be obtained, the ratio vB/k
(or vA/k due to v � 1) must fulfill vB/k # 10�3 (data not

shown). The lower limit for the interconversion rates is

inversely proportional to the order of the measurement time,

otherwise only one conformation will be detected.

Finally, we assume that the rate of the conformational

changes is controlled mainly by temperature; namely, we

take vA and vB as voltage-independent in the regime of

biological interest: 0 # V/VC # 3.

Translocation velocity

To study further the translocation process, we check the

voltage dependence of the times that maximize the peaks of

F(t), denoted as tm,i where i ¼ 1, 2, 3 (e.g., tm,1 characterized

the short time peak). In previous works (Flomenbom and

Klafter, 2003; Meller et al., 2001) t�1
m for one translocation

peak was regarded as the most probable velocity of the

translocation (up to a multiplicative constant). We show

below that our assumptions regarding the voltage dependence

of the system parameters yield either linear or quadratic de-

pendence of the translocation velocity on the voltage, and can

be used to explain the different experimental observations.

Fig. 3 shows tm,i(VC/V) and t
�1
m;iðV=VCÞ; for Vl ¼ 350 mV,

in a voltage window that leads to 0.215 # l(V) # 0.30, and

accordingly to a triple-peaked F(t). tm,1 is almost in-

dependent of VC/V (see Fig. 3 a). Although the non-

translocation peak amplitude decreases upon increasing

V/VC, the location of its maximum hardly changes. This

happens since exiting against the field occurs within a short

FIGURE 1 Poly-dTnu F(t), for several values of l, with: N ¼ 30, d ¼ 12,

x ¼ N1 d/2, T ¼ 2�C, V/VC ¼ 2, vB ¼ 102Hz, v ¼ 1, and z � 1/2. The left

peak represents the nontranslocated events, whereas the other two peaks

represent translocation. (Inset) The range for which l yields three-peaked

F(t) is shown to be 0.10 # l # 0.30, when given the above parameters.

FIGURE 2 Poly-dTnu F(t), for several values of vA and fixed vB (vB ¼
102 Hz), with l ¼ 1/4, and the other parameters as in Fig. 1. (Inset) For

small values of v, v & 10�2, F(t) displays one translocation peak that

corresponds to A, whereas for large values of v, v * 102, F(t) displays one
translocation peak that corresponds to B. For v � 1, two translocation

peaks are obtained.
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time window at the beginning of the process, otherwise the

polymer is more likely to cross the membrane due to the

electric bias. Similar behavior was observed experimentally

(Kasianowicz et al., 1996).

For the single conformation case, we showed that t�1
m;2

scales linearly with V/VC when the initial state of the

translocation is near the cis-side of the membrane (Flomen-

bom and Klafter, 2003). Fig. 3 b shows that the linear scaling
of t�1

m;2ðV=VCÞ persists. However, t�1
m;3ðV=VCÞ (Fig. 3 c)

displays a quadratic behavior, which is a consequence of the

form of l(V), as discussed in the next section when cal-

culating the MFPT. On the other hand, setting Vl ¼ 120 mV

leads to one translocation peak, and to small deviations from

linearity toward a weak quadratic behavior of t�1
m;2ðV=VCÞ;

see Fig. 4.

The model of two conformations not only yields one or

two actual translocation peaks as a function of Vl, but can

account for either a linear or quadratic dependence of the

translocation velocity with the voltage, again as a function of

Vl. Thus, varying Vl we obtain different behaviors of the

translocation, which can be related to the different experi-

mental observations.

THE MFPT

Small-field biased translocation

We now turn to calculating the MFPT, which allows for an

analytical estimation of the characteristic times of the FPT

pdf and cdf. In general, the mmoment of F(t) is calculated by
raising to the m power the inverse of the propagation matrix.

For the two conformation translocations this matrix is given

on the right-hand side of Eq. 6.

After somewhat lengthy calculations, which are given in

Appendices B and C, the expression for the MFPT, Ætæ, reads

Ætæ � �tt

l
½ðlPA;0 1PB;0Þ1 �ttðvA 1vBÞ=2�; (8)

where �tt is the MFPT for the single conformation model, and

is given by Eq. C5, and PA,0(PB,0) is the probability that the

FIGURE 3 (a) tm,i for poly-dTnu, as a func-

tion of VC/V, and the same parameters as in Fig.

1 and Vl ¼ 350 mV. tm,1 is almost independent

of VC/V in contrast to the pronounced de-

pendence of tm,2 and tm,3 (b and c). t
�1
m;2 and t

�1
m;3

depend linearly and quadratically on V/VC,

respectively. The solid lines through the circles

are polynomial fits.

FIGURE 4 t�1
m;2 for poly-dTnu for the same parameters as in Fig. 3 except

for Vl ¼ 120 mV. This value for Vl leads to 0.625 # l(V) # 0.875 and

accordingly for one translocation peak. The solid line is a polynomial fit.

(Inset) tm,1 and tm,2 behave qualitatively the same as for the case Vl ¼ 350

mV.

3580 Flomenbom and Klafter

Biophysical Journal 86(6) 3576–3584



process starts in conformation A (B). For PA,0 and PB,0 the

equilibrium condition is assumed, PA,0 ¼ vB/(vA 1 vB) and

PB,0 ¼ 1 � PA,0.

Equation 8 is valid for not-too-high fields, V/VC * 1, and

for the ratios between the interconversion rates and k found
in the previous section, vA/k, vb/k� 1. The first term in the

brackets of Eq. 8, lPA,0 1 PB,0, represents the translocation

peaks and can be compared with tm,2 and tm,3. The second

term in the brackets, �ttðvA 1vBÞ=2; represents the coupling
time cost, and is of the order of o(10�2) for voltages

that obey V/VC $ 1.5. Keeping the first term in Eq. 8, we

have

Ætæ � 2xjpb
2
d
m

zjqjð11 1=dÞ
1

V � Vc

½PA;0 1PB;0

Vl

V
�; (9)

where x � N means that the translocation process starts near

the cis-side of the membrane.

Equation 9 provides a good description of the numerically

obtained dependence of the translocation velocity on the

voltage. Ætæ consists of two terms that can be attributed to the

A (first term in the brackets) and B (second term in the
brackets) pore conformations. For Vl � 120 mV we can

replace the expression in brackets by unity in the relevant

voltages window. Thus, we find that Ætæ } (V�VC)
�1, which

implies that F(t) has one translocation peak for this choice of
Vl. For higher values of Vl and voltages of biological

interest, the two terms in the brackets contribute separately.

This leads to a term that represent the A conformation and

scales as (V�VC)
�1, and a term that represents the B

conformation that scales as [V(V�VC)]
�1.

Accordingly, Eq. 9 captures the physical essence of the

translocation of the ssDNA through the conformationally

changing pore, under a relatively small field.

Field-free translocation

In recent field-free experiments by Bates et al. (2003), the cdf

GðtÞ ¼ R t
0
FðsÞds was shown to have two regimes that were

approximated by a fast and a slow timescales, t1 and t2, with
the ratio t1/t2 � 1:20.

Motivated by these experimental results, which implies,

within our approach, that l0 fulfills l0 � 1, we study in

this subsection the zero field translocation, V / 0. We

start by computing G(t) for a translocation process that

starts at the middle state, x ¼ n/2. This is the same initial

condition that was imposed in the experiments (Bates et al.,

2003). As shown in Fig. 5 (full curve), G(t) displays two

regimes, a fast increase at short times and a slow increase

from intermediate to large times. Accordingly, we try the

approximation

GapðtÞ � 1� ðPA;0e
�t=t1 1PB;0e

�t=t2Þ: (10)

Identifying the first and the second moments obtained from

F(t) with those from the approximate F(t) we find that the

characteristics timescales of Gap(t) are (see Appendix D)

t1 ¼ �ttð11 3v=2Þ; t2 ¼ �ttð1=21vÞ1 1=vB; (11)

which, when used inGap(t), lead to the dashed curve plotted in
Fig. 5. Also shown, by dotted curve, is a modified version of

Gap(t), where t1/ tm is used in Eq. 10. Note that for the short

times, t, t1, the latter approximation fitsG(t) better, but from
intermediate times, t . 3t1, Gap(t), and G(t) coincide.
The two-conformation model produces a temporal behav-

ior that agrees with experimental observation, and provides

a good explanation for it. In the limit, V / 0, the B
conformation acts as a trapping conformation; namely, the

polymer is stuck in its position when subject to the

environment due to the B conformation. Movement occurs

only through the A conformation. As a result two regimes are

obtained for G(t). The fast increase in G(t) at short times is

a consequence of exiting due to the A conformation (at either

side of the membrane), whereas the slow saturation at longer

times is a result of the release from the trapping in the B
conformation.

In the inset of Fig. 5 we show both F(t), the approximate

F(t), and the modified version of the approximation, which is

obtained when using t1 / tm. Because the process starts in
the middle state, x ¼ n/2, F(t) has only one peak, which

coincides with previous results (Flomenbom and Klafter,

2003). Although the approximate F(t) or any other

approximation of two exponentials with positive coefficients

does not exhibit a peaked shape, information about the

maximal peak value of F(t) and the interconversion rates can

FIGURE 5 G(t) for poly-dAnu (full curve) for V ¼ 0, and the initial state

x ¼ n/2, vA ¼ 10�2 Hz, v ¼ 1/2 and the other parameters as in Fig. 1. Also

shown is the approximate cdf Gap(t) (dashed curve) and its modified version

(dotted curve). (Inset) F(t) for poly-dAnu for the corresponding cdf shown in

the main figure.
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still be extracted from Gap(t) timescales by using Eq. 11. For

example, the timescales suggested by Bates et al. (2003)

imply that tm � 165 ms and vB � 300 Hz.

CONCLUSIONS

The model introduced here describes the translocation of

ssDNA through a fluctuating pore structure. As a conse-

quence the ssDNA within the transmembrane pore part is

exposed to a changing environment, which could be

reflected in the first passage times pdf, F(t). By computing

F(t), comparing our results to experimental observations,

and using physical arguments, we obtained theoretically

a behavior which was previously observed experimentally

�F(t) having three peaks. This behavior is obtained by

tuning the dimensionless parameter l, which controls the

effect of the change in the pore structure on the

translocating ssDNA, and the interconversion rates be-

tween the pore conformations, vA and vB. In particular, l
has to fulfill 0.10 # l # 0.30, and the interconversions

rates have to be of the same order of magnitude, and much

smaller than the typical rate of the A pore conformation, k,
vB/k # 10�3. This implies that the relaxation timescale of

the ssDNA in the pore is much shorter than the pore-

conformational change timescale. From these conditions

the maximal values of the interconversion rates can be

deduced from the value of k, given by Eq. 3, to be vA �
vB ¼ 102 Hz.

We have been able to show, both numerically and

analytically, that the times that maximize the actual trans-

location peaks, tm,i, i ¼ 2, 3, and the MFPT, are inversely

proportional to the first or the second power of the field,

depending on Vl. This emphasizes the crucial role played by

Vl in the translocation process, and may explain the different

experimental results for F(t) discussed in the introduction,

meaning that Vl is sensitive to the specific experimental

setup and biological conditions.

The probability to exit the channel until time t, G(t), in a

field-free environment, has been shown to have two regimes

that can be approximated by two timescales, t1 and t2, which
are approximately one order-of-magnitude apart, and are

closely related to the �tt; tm, and the interconversion rates:

t1 ¼ �ttð11 3v=2Þor t1/ tm, and t2 ¼ �ttð1=21vÞ1 1=vB:
From these relations the interconversion rates can be

deduced when analyzing experimental data.

APPENDIX A

In this Appendix we introduce the formal solution of Eq. 6 and define the

symbols used in next derivations. In general, S(t) for a discrete system is

given by summing the elements of the vector that solves the ME,

SðtÞ ¼ U~2nEe
DtE�1

P~ð0j2nÞ: (A1)

Here U~2n is the summation row vector of 2n dimensions, P~ð0j2nÞ is the

initial condition column vector, and

½P~ð0j2nÞ�j ¼ ðPA;0dx;j 1PB;0dx1n;jÞ; (A2)

where x is the initial state of the translocation process. The definite negative

real part eigenvalues matrix, D, is obtained through the similarity

transformation of D ¼ E�1HE, where H is the matrix given on the right-

hand side of Eq. 6, and E and E�1 are the eigenvectors matrix, and the

inverse, of H.

APPENDIX B

Here we calculate formally the MFPT Ætæ . Themmoment of F(t) is given by

Ætmæ ¼ RN
0

tmFðtÞdt ¼ m!U~2nð�HÞ�mP~ð0j2nÞ to calculate the inverse of the
propagation matrixH, which is given on the right-hand side of Eq. 6. We use

the projection operator of Klafter and Silbey (1980) and Zwanzig (2001),

QHQ [ HQQ ¼ A – vA, HQZ ¼ vB, HZQ ¼ vA, HZZ ¼ B – vB, and the

identity, I ¼ HM, and obtain M blocks,

MQQ ¼ ½AQQ � AQZðAZZÞ�1AZQ��1 ¼ A�1CðB�vBÞ
MQZ ¼ ½AZQ � AZZðAQZÞ�1AQQ��1 ¼ �A�1CvB;

(B1)

whereMZQ andMZZ are obtained in a similar way. Now, we can write them

moment vector of F(t) as

Æ~tmtmæ ¼ m!ð�MÞmP~ð0j2nÞ; (B2)

where M is given by

M ¼ A�1CðB� vBÞ �A�1CvB

�A�1CvA A�1CðA� vAÞ
� �

; (B3)

and C ¼ (B – vB – lvA)
�1. For m ¼ 1 in Eq. B2 we obtain the MFPT

vector

Æ~ttæ ¼ �A�1CðPA;0B� vBÞP~ð0jnÞ
�A�1CðPB;0A� vAÞP~ð0jnÞ

� �
; (B4)

where ½P~ð0jnÞ�j ¼ dx;j: Summing Æ~ttæ elements by using the summation row

vector of n dimensions U~n; results in

Ætæ ¼� U~nCP~ð0jnÞðlPA;0 1PB;0Þ
1U~nA

�1CP~ð0jnÞðvA 1vBÞ: (B5)

Note that the MFPT of the single A conformation, �tt; is �tt ¼ �U~nA�1P~ð0jnÞ;
which has a similar form to the first term in Eq. B5 when choosing C�1 as

the propagation matrix.

It is easy to verify that for l ¼ 1, Ætæ reduces to the MFPT of the single

conformation case, �tt: Rewriting Eq. B5 as

Ætæ ¼ �U~nA
�1C½PA;0B1PB;0A� vA � vB�P~ð0jnÞ (B6)

and substituting l ¼ 1, we find that

Ætæ ¼ �U~nA
�1P~ð0jnÞ ¼ �tt: (B7)

APPENDIX C

To obtain an explicit expression for the MFPT of the translocation in a weak

field limit, we first rewrite Eq. B5 as

Ætæ ¼ t̂tðlPA;0 1PB;0Þ1 ~s
2

s
2ðvA 1vBÞ; (C1)
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where t̂t ¼ �U~nCP~ð0jnÞ and ~s2s2 ¼ U~nA�1CP~ð0jnÞ: We can further rewrite

t̂t as t̂t ¼ +n

s¼1
t̂ts;x; where t̂ts;x[� ðCÞs;x defines the mean residence time

spent in state s before exiting the channel, given that the process started at

state x (Bar-Haim and Klafter, 1998), and has the form (Huang and McColl,

1997) of

�ðCÞ
s;x ¼

DðhsÞDðhn1 1�xÞrx�s

DðhÞDðhn1 1Þ k̂
; s, x; (C2)

where (C)s,x for s$ x is obtained when exchanging x for s and r for l in Eq.
C2. Here h6 ¼ [1 6 (1–4rl)1/2]/2, r ¼ ap1, l ¼ ap–, a ¼ lk=k̂; and

k̂ ¼ lk1vB 1 lvA: Thus, we find that t̂ts;x is a function of the parameter

a ¼ [1 1 (vA 1 vB/l)/k]
�1, which obeys 0 # a # 1, and is a measure of

the difference between �tt and t̂t:Using v� 1 and vA/k� 10�3 leads to a� 1

given V/VC $ 1, and accordingly to

ðCÞ
s;x ¼ ðA�1Þ

s;xk=k̂ ¼ ðA�1Þ
s;x=l; (C3)

where Eq. C3 implies

t̂t ¼ �tt=l: (C4)

To obtain an explicit expression for �tt; it is convenient to use the

independence approximation and replace pj,j–1 and kj by state-independent

terms: p1 ¼ ½11 eð�V=Vc 1 1Þ��1
and k. This approximation, which is

valid for large polymers, N . d, and which becomes more accurate as N

increases, leads to a1 ¼ p1k, a– ¼ (1 – p1)k, so that (Flomenbom and

Klafter, 2003),

�tt ¼ Dðpn1 1�xÞpx

1 x � DðpxÞpn1 1�x

� ðn1 1� xÞ
kDpDðpn1 1Þ ; (C5)

where D(ps)¼ p1
s –p�

s. In the limit of a not-too-large field, V/VC * 1, Eq. C5

reduces to

�tt � 2xjpb
2
d
m

zjqjð11 1=dÞ
1

V � VC

: (C6)

To compute ~s2s2 we rewrite ~s2s2 as ~s2s2 ¼ Sn
s¼1�ttst̂ts;x; where ts is given by Eq.

C5 for x ¼ s, and t̂ts;x is given by Eq. C2. For a � 1 we have ~s2s2 ¼ t2=2l;

where t2 is the second moment of F(t) for the single A conformation

case. The calculation of t2=2 ¼ +n

s¼1
�tts�tts;x yields in the weak field limit

V/VC * 1,

t
2

2
� 1

ðkDpÞ2½
xðx � 1Þ

2
1

xy
xð1� yÞ � yð1� y

xÞ
ð1� yÞ2 1 II�;

(C7)

where y ¼ p– /p1 and

II ¼ y�x � 1

y
�n � 1

px�n�1

�
1=p� � 1

pn1 1�x

1 � 1

1� p1

1 n1 1� xp
n1 1�x

1

� ��

�ðn1 1� xÞn1 x

2

�
:

(C8)

Noticing that II represents the nontranslocation events and vanishes for

V/VC * 1 as yn–x, we rewrite Eq. C7 up to a leading term in x as

t
2

2
� xðx � 1Þ

2ðkDpÞ2 : (C9)

Using �tt � ðx=kDpÞ valid for V/VC * 1 (Flomenbom and Klafter, 2003),

Eq. C9 yields for a leading order in x,

~s2
s

2 � �tt2=2l: (C10)

Substituting Eq. C4 and Eq. C10 into Eq. C1, Eq. 8 is obtained.

APPENDIX D

For the analysis of the field-free translocation we start by computing Ætæ and
Æt2æ. Substituting l ¼ 0 in Eq. B5, we obtain

Ætæ ¼ �U~nA
�1
P~nð0Þ vA 1vB

vB

� �
1

PB;0

vB

; (D1)

which can be written as

Ætæ ¼ �ttð11vÞ1PB;0=vB: (D2)

Note that experiments suggest that l0 � 1, which leads to l0k , vB,

whereas l0k � vB is used for simplification, and enables the substitution

of l ¼ 0 in Eq. B5.

To compute Æt2æ, we have to calculate the blocks of M2,

M2

QQ ¼ A�2ð11vÞ;
M2

QZ ¼ A�2ð11vÞ � A�1
=vB;

M2

ZQ ¼ A�2
vð11vÞ;

M2

ZZ ¼ A�2
vð11vÞ � A�1

2v=vB 1 1=v
2
B: (D3)

Substituting Eq. D3 into Eq. B2 and summing the vector elements, we

obtain

Æt2æ
2

¼ t
2

2
ð11vÞ2 1 �ttð11 2vÞPB;0

vB

1
PB;0

v
2

B

: (D4)

To get the relaxation timescales of Gap(t), t1, and t2, we identify Ætæ and
Æt2æ obtained from

FapðtÞ ¼ PA;0

t1
e
�t=t1 1

PB;0

t2
e
�t=t2 ; (D5)

with the corresponding moments obtained from Eq. D2 and Eq. D4. This

procedure yields

t1 ¼ Ætæ� PB;0t2
PA;0

; (D6)

and

t2 ¼ Ætæ1
PA;0

PB;0

Æt2æ
2

� Ætæ2
� �� �1=2

: (D7)

Substituting Eq. D2 and Eq. D4 into Eq. D7 results in

tz ¼ �ttð11vÞ1PB;0

vB

1
PA;0

vB

3 1� �tt
vB

PA;0

1
v

2

B

PA;0PB;0

t
2

2
� �tt

2

 !" #1=2

: (D8)

Expanding the square root in Eq. D8 to leading order and using Eq. D6, Eq.

11 is obtained.
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TABLE 1 Abbreviations

Symbol Definition Expression

N Number of monomers in the

polymer

d Channel length in monomer

length units

n System length n ¼ N 1 d–1

x Initial state of the translocation

process

b Monomer length

jp ssDNA-TPP interaction coefficient

m Rigidity coefficient of the

ssDNA inside the TPP

k Dominant rate of conformation A k ¼ 1/(bjpb
2dm)

zq Effective charge per monomer

VC Characteristic voltage of the

translocation

VC ¼ 1/[bzjqj(1 1 1/d)]

l Effective parameter of

conformational change

l � l0 1 V/Vl

vA Rate of change from conformation

A to B

vB Rate of change from conformation

B to A

v Ratio between the conformational

change rates

v ¼ vA/vB

PA,0 Initial occupancy probability of

conformation A

PA;0 ¼ vB

vA 1vB

PB,0 Initial occupancy probability of

conformation B
PB;0 ¼ vA

vA 1vB

F(t) Translocation FPT pdf

tm,i Time that maximizes the

ith F(t) peak

t MFPT for the single conformation

case

t � 2xjpb
2 dm

zjqjð11 1=dÞ
1

V�Vc

Ætæ MFPT for the two-conformation

case

Ætæ � tðPA;0 1
VlPB;0

V
Þ

G(t) The translocation FPT cdf GðtÞ ¼ R t
0
FðsÞds

t1 PA,0 weighted timescale of G(t) t1 ¼ tð11 3v=2Þ
t2 PB,0 weighted timescale of G(t) t2 ¼ tð1=21vÞ1 1=vB
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