2,039 research outputs found

    Altruism and Voluntary Provision of Public Goods.

    Get PDF
    We study how people's predisposition towards altruism, as measured by tools developed by psychologists, affects their behaviour in a voluntary contributions public good environment. Earlier experiments provide evidence against the strong free rider hypothesis; however, contributions to the public good decrease with repetition. We investigate whether a high level of contributions can be sustained in groups of subjects who have been pre-selected on the basis of their altruistic inclinations. In the first stage of the experiment, each subject responds to a psychology questionnaire that measures various dimensions of one's personality. The subjects are then matched in groups according to their altruism scores, and engage in a voluntary contribution game. We consider whether the levels and dynamics of group contributions differ significantly between the groups with altruists and non-altruists. We find that subjects' altruism has a weak but positive effect on group behaviour in the public good game.PUBLIC OWNERSHIP ; BEHAVIOUR ; GAMES

    A Bootstrapping Approach for Generating Maximally Path-Entangled Photon States

    Full text link
    We propose a bootstrapping approach to generation of maximally path-entangled states of photons, so called ``NOON states''. Strong atom-light interaction of cavity QED can be employed to generate NOON states with about 100 photons; which can then be used to boost the existing experimental Kerr nonlinearities based on quantum coherence effects to facilitate NOON generation with arbitrarily large number of photons all within the current experimental state of the art technology. We also offer an alternative scheme that uses an atom-cavity dispersive interaction to obtain sufficiently high Kerr-nonlinearity necessary for arbitrary NOON generation

    Quantum noise limits to matter-wave interferometry

    Get PDF
    We derive the quantum limits for an atomic interferometer in which the atoms obey either Bose-Einstein or Fermi-Dirac statistics. It is found that the limiting quantum noise is due to the uncertainty associated with the particle sorting between the two branches of the interferometer. As an example, the quantum-limited sensitivity of a matter-wave gyroscope is calculated and compared with that of laser gyroscopes

    Hijacking Journalism: Legitimacy and Metajournalistic Discourse in Right-Wing Podcasts

    Get PDF
    Whereas personal expression has become a core practice of journalism whose merits can include greater attention to context and interpretative analysis, these freedoms from the constraints of traditional broadcast conventions can pose serious risks, including the ideological hijacking of journalism by partisan actors. In popular right-wing podcasts, such as those hosted by Ben Shapiro and Dan Bongino, the element of opinion amplifies the tendency of the podcast medium to relegate news to a secondary concern behind the emotional impact. Not only do podcasters like Shapiro and Bongino contribute to a fractured media environment of hyper-partisan news and commentary, but they also utilize social media platforms and transmedia networks to undermine traditional journalism and replace it with an alternative conservative media ecosystem - a multiplatform, full-service clearinghouse of news and commentary afforded by the publishing capabilities of the internet and the distribution algorithms of social media platforms like Facebook. This study charts the evolution of conservative audio production, from the influential work of talk radio star Rush Limbaugh through the latest innovations by conservative podcasters, as exemplified by Shapiro and Bongino. Our study builds on previous scholarship on metajournalistic discourse to examine how right-wing podcasters use exclusionary language to delegitimize the institution of journalism and offer a self-contained, ideologically conservative version of journalism as a replacement

    Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells

    Get PDF
    Thin films of cobalt sulfide (CoS) of thickness l < 10m have been employed as anodes of p-type dye-sensitized solar cells (p-DSCs) when P1-sensitized nickel oxide (NiO) was the photoactive cathode and /I - constituted the redox mediator. In the role of counter electrode for p-DSCs, CoS was preferred over traditional platinized fluorine-doped indium oxide (Pt-FTO) due to the lower cost of the starting materials (Co salts) and the easier procedure of deposition onto large area substrates. The latter process was carried out via direct precipitation of CoS from aqueous solutions. The photoconversion efficiency (η) of the corresponding device was 0.07%. This value is about 35% less than the efficiency that is obtained with the analogous p-DSC employing the Pt-FTO anode (η = 0.11). Unlike p-DSCs based on Pt-FTO anodes, the photoelectrochemical cells employing CoS electrodes showed that this anodic material was not able to sustain the photocurrent densities generated by P1-sensitized NiO at a given photopotential. Illumination of the p-DSCs with CoS anodes and P1-sensitized NiO cathodes actually induced the reverse bias of the photoelectrochemical cell with CoS behaving like a p-type semiconductor with no degeneracy. © 2017 IOP Publishing Ltd

    Microcavities coupled to multilevel atoms

    Full text link
    A three-level atom in the Λ\Lambda-configuration coupled to a microcavity is studied. The two transitions of the atom are assumed couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both, in the strong-coupling and the bad cavity limit. We find that compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.Comment: 14 pages, 9 figure

    Evaluation of a reel-to-reel atmospheric plasma system for the treatment of polymers

    Get PDF
    Plasma treatments are widely used to enhance the surface energy of polymers prior to bonding or the application of functional coatings. This study investigates the performance of a linear atmospheric pressure plasma source for the reel-to-reel treatment of polymer webs. The continuous argon plasma treatments were carried out on 15 cm diameter polyethylene terephthalate (PET) web substrates using the linear plasma source (Plamax), operating at 13.56 MHz. The study investigated how the processing parameters influenced the effectiveness of the plasma treatment in enhancing both the polymer web\u27s water contact angle (WCA) and surface energy (SE). Based on these measurements the plasma treatment was found to yield a homogeneous level of activation across the 15 cm web, using a treatment speed of 0.9 m/min. The plasma discharge was monitored using both thermal imaging and optical emission spectroscopy (OES). The latter demonstrated how the oxygen species which diffuse into the argon plasma due to air ingress, were directly correlated with the level of polymer activation

    A Quantum Rosetta Stone for Interferometry

    Get PDF
    Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and the discrete Fourier transform. Based on this equivalence we introduce the ``quantum Rosetta stone'', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method should work in atom spectroscopy.Comment: 8 pages, 4 figure
    corecore