63 research outputs found

    Continental slope records indicate a grounded ice sheet margin during past glacials, South Shetland Trench, Antarctica

    Get PDF
    The South Shetland Trench (SST) is located around 100 km northwest, and parallel to, the South Shetland Islands, located between the Antarctic Peninsula and South America. Although a number of studies examining glacial history have been undertaken in the Bransfield Strait located between the South Shetland Islands and the Antarctic Peninsula to the south, the authors believe this is the first study of the seafloor glacial geomorphology, and recent glacial history of the SST. This paper presents the results from a Eurofleets2 expedition to the SST that took place in December 2015. There is evidence from other sub-Antarctic islands such as the South Orkney Islands and Elephant Island for glaciations that extended well onto their continental shelves although a lack of age constraint from marine cores means it cannot be tied to a specific glaciation. Multibeam echosounder data reveal the study area on the southern flank of the South Shetland Trench to host a system of linear downslope gullies and glacigenic debris flows. Downslope gullies have been observed on other glaciated margins such as the Scotian slope offshore Canada, Ross Sea Antarctica, north-western Barents Sea and West Shetland Margin offshore north-western UK. The gullies are inferred as being eroded by turbidity currents comprising cold, dense, sediment-rich meltwater released from an ice front located at or near the continental shelf break. Glacigenic debris flows are found to extend from the continental shelf break to the lower continental slope. Sub-bottom profiler data penetrated up to 150ms below seafloor in places and reveal a stacked sequence of debris flows suggestive of a fluctuating ice front that was grounded to, and retreated from, the shelf break on several occasions. The trench floor appears to be devoid of major geomorphological features as revealed by the multibeam echosounder data and comprise a relatively well layered sequence imaged by the sub-bottom profiler. In addition 3 gravity cores up to 2.79 m in length and one core catcher sample were recovered from the study area. The cores will be analysed on their return to the UK and combined with the acoustic data to produce a shallow geological model specifically looking at the fluctuating ice margin located north of the South Shetland Islands

    Submarine landforms and shallow acoustic stratigraphy of a 400 km-long fjord-shelf-slope transect, Kangerlussuaq margin, East Greenland

    Get PDF
    Kangerlussuaq Fjord is a relatively uniform, steep-walled basin, whose floor has an almost smooth surface. Debris is supplied mainly from icebergs from the fast-flowing Kangerlussuaq Glacier. Sedimentation after iceberg release from multi-year sea ice is mainly by rain-out of fine-grained englacial debris. Streamlined glacial lineations and drumlins were produced at the sedimentary bed of an ice sheet that expanded into Kangerlussuaq Trough at the Last Glacial Maximum (LGM). Bedrock channels and crescentic overdeepenings indicate warm-based ice and free water beneath parts of the former ice sheet. Cross-cutting iceberg scour marks, which characterise outer Kangerlussuaq shelf, were produced not only during deglaciation, but also occasionally through the Holocene by deep-keeled icebergs from further north in East Greenland. The outward-convex contours of the shelf edge and slope beyond Kangerlussuaq Trough, and debris flows on the slope, suggest a glacier-influenced high-latitude fan. The distribution of streamlined subglacial landforms demonstrates that the Greenland Ice Sheet extended throughout Kangerlussuaq Fjord and reached at least 200 km across the shelf in Kangerlussuaq Trough at the LGM. Streamlined landform orientation indicates ice flow from the interior of Greenland down the axis of Kangerlussuaq Trough. There is little evidence for discrete sedimentary depocentres in the trough, implying that ice probably retreated rapidly from the outer and mid shelf during deglaciation

    Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    Get PDF
    © 2016 Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size

    "Geomorphological record of a former ice stream to ice shelf lateral transition zone in Northeast Greenland

    Get PDF
    Understanding ice stream dynamics over decadal to millennial timescales is crucial for improving numerical model projections of ice sheet behaviour and future ice loss. In marine-terminating settings, ice shelves play a critical role in controlling ice-stream grounding line stability and ice flux to the ocean, but few studies have investigated the terrestrial lateral geomorphological imprint of ice shelves during deglaciation. Here, we document the terrestrial deglacial landsystem of Nioghalvfjerdsfjorden Glacier (79N) in northeast Greenland, following the Last Glacial Maximum, and the margin's lateral transition to a floating ice shelf. High-elevation areas are influenced by local ice caps and display autochthonous to allochthonous blockfields that mark the interaction of local ice caps with the ice stream below. A thermal transition from cold- to warm-based ice is denoted by the emplacement of erratics onto allochthonous blockfields. Below ~600 m above sea level (a.s.l.) glacially abraded bedrock surfaces and assemblages of lateral moraines, ‘hummocky’ moraine, fluted terrain, and ice-contact deltas record the former presence of warm-based ice and thinning of the grounded ice stream margin through time. In the outer fjord a range of landforms such as ice shelf moraines, dead-ice topography, and weakly developed ice marginal glaciofluvial outwash was produced by an ice shelf during deglaciation. Along the mid- and inner-fjord areas this ice shelf signal is absent, suggesting ice shelf disintegration prior to grounding line retreat under tidewater conditions. However, below the marine limit, the geomorphological record along the fjord indicates the expansion of the 79N ice shelf during the Neoglacial, which culminated in the Little Ice Age. This was followed by 20th century recession, with the development of a suite of compressional ice shelf moraines, ice-marginal fluvioglacial corridors, kame terraces, dead-ice terrain, and crevasse infill ridges. These mark rapid ice shelf thinning and typify the present-day ice shelf landsystem in a warming climate

    Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum

    Get PDF
    This paper compiles and reviews marine and terrestrial data constraining the dimensions and configuration of the Antarctic Peninsula Ice Sheet (APIS) from the Last Glacial Maximum (LGM) through deglaciation to the present day. These data are used to reconstruct grounding-line retreat in 5ka time-steps from 25kaBP to present. Glacial landforms and subglacial tills on the eastern and western Antarctic Peninsula (AP) shelf indicate that the APIS was grounded to the outer shelf/shelf edge at the LGM and contained a series of fast-flowing ice streams that drained along cross-shelf bathymetric troughs. The ice sheet was grounded at the shelf edge until ~20calkaBP. Chronological control on retreat is provided by radiocarbon dates on glacimarine sediments from the shelf troughs and on lacustrine and terrestrial organic remains, as well as cosmogenic nuclide dates on erratics and ice moulded bedrock. Retreat in the east was underway by about 18calkaBP. The earliest dates on recession in the west are from Bransfield Basin where recession was underway by 17.5calkaBP. Ice streams were active during deglaciation at least until the ice sheet had pulled back to the mid-shelf. The timing of initial retreat decreased progressively southwards along the western AP shelf; the large ice stream in Marguerite Trough may have remained grounded at the shelf edge until about 14calkaBP, although terrestrial cosmogenic nuclide ages indicate that thinning had commenced by 18kaBP. Between 15 and 10calkaBP the APIS underwent significant recession along the western AP margin, although retreat between individual troughs was asynchronous. Ice in Marguerite Trough may have still been grounded on the mid-shelf at 10calkaBP. In the Larsen-A region the transition from grounded to floating ice was established by 10.7-10.6calkaBP. The APIS had retreated towards its present configuration in the western AP by the mid-Holocene but on the eastern peninsula may have approached its present configuration several thousand years earlier, by the start of the Holocene. Mid to late-Holocene retreat was diachronous with stillstands, re-advances and changes in ice-shelf configuration being recorded in most places. Subglacial topography exerted a major control on grounding-line retreat with grounding-zone wedges, and thus by inference slow-downs or stillstands in the retreat of the grounding line, occurring in some cases on reverse bed slopes

    A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Get PDF
    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20ka, 15ka, 10ka and 5ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorit. © 2014 The Authors

    Progressive ductile shearing during till accretion within the deforming bed of a palaeo-ice stream

    Get PDF
    This paper presents the results of a detailed microstructural study of a thick till formed beneath the Weichselian (Devensian) Odra palaeo-ice stream, west of Åšroda Wielkopolska, Poland. This SE-flowing ice stream was one of a number of corridors of faster flowing ice which drained the Scandinavian Ice Sheet in the Baltic region. Macroscopically, the massive, laterally extensive till which formed the bed of this ice stream lacks any obvious evidence of glaciotectonism (thrusting, folding). However, microscale analysis reveals that bed deformation was dominated by foliation development, recording progressive ductile shearing within a subhorizontal subglacial shear zone. Five successive generations of clast microfabric (S1 to S5) have been identified defining a set of up-ice and down-ice dipping Riedel shears, as well as a subhorizontal shear foliation coplanar to the ice-bed interface. Cross-cutting relationships between the shear fabrics record temporal changes in the style of deformation during this progressive shear event. Kinematic indicators (S-C and ECC-type fabrics) within the till indicate a consistent SE-directed shear sense, in agreement with the regional ice flow pattern. A model of bed deformation involving incremental progressive simple shear during till accretion is proposed. The relative age of this deformation was diachronous becoming progressively younger upwards, compatible with subglacial shearing having accompanied till accretion at the top of the deforming bed. Variation in the relative intensity of the microfabrics records changes in the magnitude of the cumulative strain imposed on the till and the degree of coupling between the ice and underlying bed during fast ice flow

    Passive Solar Heating Methods for Energy Efficient Architecture

    No full text
    • …
    corecore