72 research outputs found
Chronic glomerulonephritis of the mixed type in patient with HBV-infection (<i>Clinical case</i>)
The aim of the publication. To present a clinical case of the chronic glomerulonephritis (CGN) associated with hepatitis B virus (НВV) infection. To demonstrate efficacy of nucleoside analogues with high antiviral activity in the treatment of such patients and importance of well-timed prescription of antiviral therapy.Key points. Presented case shows renal onset of chronic viral hepatitis B, that was previously asymptomatic for long time in patient, who was infected at early childhood. Clinical manifestation of disease was characterized by nephrotic syndrome, hematuria, systemic hypertension. Severe dependent edema, abdominal and pleural effusions, splenomegaly and hypertension up to 160/90 mm Hg drew attention. Laboratory tests revealed markers of НВе-negative НВV-infection, high serum level of НВV DNA replication, severe proteinuria at preserved renal function. At ultrasound liver elastometry showed severe fibrosis (METAVIR F3). On a background of glucocorticosteroid treatment elevation of cytolytic enzymes (alanine transaminase of 120 U/L, aspartate aminotransferase of 98 U/L) was registered for the first time. Treatment included entecavir 0,5 mg per day for 12 wks with normalization of transaminase levels, virologic response (DNA НВV under 50 МЕ/ML) at the 30th week, НВе seroconversion at the 42nd week of treatment.Conclusions. Extrahepatic manifestations of viral hepatites frequently not only mask liver disease, but determine prognosis in many respects as well. Pathogenic treatment of НВV-infection associated CGN without antiviral treatment is accompanied by risk of liver disease activation. Patients with renal involvement within the framework of chronic НВV-infection require antiviral therapy by nucleoside analogues, their high antiviral activity is demonstrated by presented clinical case
Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair
The mouse hair coat comprises protective “primary” and thermo-regulatory “secondary” hairs. Primary hair formation is ectodysplasin (Eda) dependent, but it has been puzzling that Tabby (Eda-/y) mice still make secondary hair. We report that Dickkopf 4 (Dkk4), a Wnt antagonist, affects an auxiliary pathway for Eda-independent development of secondary hair. A Dkk4 transgene in wild-type mice had no effect on primary hair, but secondary hairs were severely malformed. Dkk4 action on secondary hair was further demonstrated when the transgene was introduced into Tabby mice: the usual secondary follicle induction was completely blocked. The Dkk4-regulated secondary hair pathway, like the Eda-dependent primary hair pathway, is further mediated by selective activation of Shh. The results thus reveal two complex molecular pathways that distinctly regulate subtype-based morphogenesis of hair follicles, and provide a resolution for the longstanding puzzle of hair formation in Tabby mice lacking Eda
Differential regulation of neurotrophin expression in human bronchial smooth muscle cells
BACKGROUND: Human bronchial smooth muscle cells (HBSMC) may regulate airway inflammation by secreting cytokines, chemokines and growth factors. The neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), have been shown to be elevated during airway inflammation and evoke airway hyperresponsiveness. We studied if HBSMC may be a source of NGF, BDNF and NT-3, and if so, how inflammatory cytokines may influence their production. METHODS: Basal and cytokine (IL-1β, IFN-γ, IL-4)-stimulated neurotrophin expression in HBSMC cultured in vitro was quantified. The mRNA expression was quantified by real-time RT-PCR and the protein secretion into the cell culture medium by ELISA. RESULTS: We observed a constitutive NGF, BDNF and NT-3 expression. IL-1β stimulated a transient increase of NGF, while the increase of BDNF had a later onset and was more sustained. COX-inhibitors (indomethacin and NS-398) markedly decreased IL-1β-stimulated secretion of BDNF, but not IL-1β-stimulated NGF secretion. IFN-γ increased NGF expression, down-regulated BDNF expression and synergistically enhanced IL-1β-stimulated NGF expression. In contrast, IL-4 had no effect on basal NGF and BDNF expression, but decreased IL-1β-stimulated NGF expression. NT-3 was not altered by the tested cytokines. CONCLUSION: Taken together, our data indicate that, in addition to the contractile capacity, HBSMC can express NGF, BDNF and NT-3. The expression of these neurotrophins may be differently regulated by inflammatory cytokines, suggesting a dynamic interplay that might have a potential role in airway inflammation
Fstl1 Antagonizes BMP Signaling and Regulates Ureter Development
Bone morphogenetic protein (BMP) signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1), encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH) signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling
Positive Selection in East Asians for an EDAR Allele that Enhances NF-ÎşB Activation
Genome-wide scans for positive selection in humans provide a promising approach to establish links between genetic variants and adaptive phenotypes. From this approach, lists of hundreds of candidate genomic regions for positive selection have been assembled. These candidate regions are expected to contain variants that contribute to adaptive phenotypes, but few of these regions have been associated with phenotypic effects. Here we present evidence that a derived nonsynonymous substitution (370A) in EDAR, a gene involved in ectodermal development, was driven to high frequency in East Asia by positive selection prior to 10,000 years ago. With an in vitro transfection assay, we demonstrate that 370A enhances NF-ÎşB activity. Our results suggest that 370A is a positively selected functional genetic variant that underlies an adaptive human phenotype
5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells
YesMammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.This study was supported by the grants 5R01AR064580 and 1RO1AR071727 to VAB, TKS and AAS, as well as by the grants from MRC (MR/ M010015/1) and BBSRC (BB/K010050/1) to VAB
Biology of human hair: Know your hair to control it
Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization
Guaranteed Overapproximations of Unsafe Sets for Continuous and Hybrid Systems: Solving the Hamilton-Jacobi Equation Using Viability Techniques
We show how reachable sets of constrained continuous and simple hybrid systems may be computed using the minimum time-to-reach function.e pre5N t an algorithm for computing a discre e approximation to the minimum time-to-re ach function, which we prove to be a conve rgingunde rapproximation to the actual function.e use the discre4 minimum time69-re ch function for simple hybrid syste5 to compute ove rapproximations of unsafe zon for aircraft in ase3 or of the Oakland Air Tra#c Control Cete( le ading to the automatic ge516 ation of conflict-free aircraft maneuvers
- …