360 research outputs found
Trends in the magnetic properties of Fe, Co and Ni clusters and monolayers on Ir(111), Pt(111) and Au(111)
We present a detailed theoretical investigation on the magnetic properties of
small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and
Au(111). For this a fully relativistic {\em ab-initio} scheme based on density
functional theory has been used. We analyse the element, size and geometry
specific variations of the atomic magnetic moments and their mutual exchange
interactions as well as the magnetic anisotropy energy in these systems. Our
results show that the atomic spin magnetic moments in the Fe and Co clusters
decrease almost linearly with coordination on all three substrates, while the
corresponding orbital magnetic moments appear to be much more sensitive to the
local atomic environment. The isotropic exchange interaction among the cluster
atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe
and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in
general one or two orders of magnitude smaller when compared to the isotropic
one. For the magnetic properties of Ni clusters the magnetic properties can
show quite a different behaviour and we find in this case a strong tendency
towards noncollinear magnetism
FIBS: A Generic Framework for Classifying Interval-based Temporal Sequences
We study the problem of classifying interval-based temporal sequences
(IBTSs). Since common classification algorithms cannot be directly applied to
IBTSs, the main challenge is to define a set of features that effectively
represents the data such that classifiers can be applied. Most prior work
utilizes frequent pattern mining to define a feature set based on discovered
patterns. However, frequent pattern mining is computationally expensive and
often discovers many irrelevant patterns. To address this shortcoming, we
propose the FIBS framework for classifying IBTSs. FIBS extracts features
relevant to classification from IBTSs based on relative frequency and temporal
relations. To avoid selecting irrelevant features, a filter-based selection
strategy is incorporated into FIBS. Our empirical evaluation on eight
real-world datasets demonstrates the effectiveness of our methods in practice.
The results provide evidence that FIBS effectively represents IBTSs for
classification algorithms, which contributes to similar or significantly better
accuracy compared to state-of-the-art competitors. It also suggests that the
feature selection strategy is beneficial to FIBS's performance.Comment: In: Big Data Analytics and Knowledge Discovery. DaWaK 2020. Springer,
Cha
Smooth adiabatic evolutions with leaky power tails
Adiabatic evolutions with a gap condition have, under a range of
circumstances, exponentially small tails that describe the leaking out of the
spectral subspace. Adiabatic evolutions without a gap condition do not seem to
have this feature in general. This is a known fact for eigenvalue crossing. We
show that this is also the case for eigenvalues at the threshold of the
continuous spectrum by considering the Friedrichs model.Comment: Final form, to appear in J. Phys. A; 11 pages, no figure
Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals
High-order derivatives of analytic functions are expressible as Cauchy
integrals over circular contours, which can very effectively be approximated,
e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius
of convergence is equal, numerical stability strongly depends on r. We give a
comprehensive study of this effect; in particular we show that there is a
unique radius that minimizes the loss of accuracy caused by round-off errors.
For large classes of functions, though not for all, this radius actually gives
about full accuracy; a remarkable fact that we explain by the theory of Hardy
spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and
by the saddle-point method of asymptotic analysis. Many examples and
non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature
rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat
Late Maastrichtian carbon isotope stratigraphy and cyclostratigraphy of the Newfoundland Margin (Site U1403, IODP Expedition 342)
Earthâs climate during the Maastrichtian (latest Cretaceous) was punctuated by brief warming and cooling episodes, accompanied by perturbations of the global carbon cycle. Superimposed on a long-term cooling trend, the middle Maastrichtian is characterized by deep-sea warming and relatively high values of stable carbon-isotope ratios, followed by strong climatic variability towards the end of the Cretaceous. A lack of knowledge on the timing of climatic change inhibits our understanding of underlying causal mechanisms. We present an integrated stratigraphy from Integrated Ocean Drilling Program (IODP) Site U1403, providing an expanded deep ocean record from the North Atlantic (Expedition 342, Newfoundland Margin). Distinct sedimentary cyclicity suggests that orbital forcing played a major role in depositional processes, which is confirmed by statistical analyses of high resolution elemental data obtained by X-ray fluorescence (XRF) core scanning. Astronomical calibration reveals that the investigated interval encompasses seven 405-kyr cycles (Ma4051 to Ma4057) and spans the 2.8 Myr directly preceding the Cretaceous/Paleocene (K/Pg) boundary. A high-resolution carbon-isotope record from bulk carbonates allows us to identify global trends in the late Maastrichtian carbon cycle. Low-amplitude variations (up to 0.4â°) in carbon isotopes at Site U1403 match similar scale variability in records from Tethyan and Pacific open-ocean sites. Comparison between Site U1403 and the hemipelagic restricted basin of the Zumaia section (northern Spain), with its own well-established independent cyclostratigraphic framework, is more complex. Whereas the pre-K/Pg oscillations and the negative values of the Mid-Maastrichtian Event (MME) can be readily discerned in both the Zumaia and U1403 records, patterns diverge during a ~ 1 Myr period in the late Maastrichtian (67.8â66.8 Ma), with Site U1403 more reliably reflecting global carbon cycling. Our new carbon isotope record and cyclostratigraphy offer promise for Site U1403 to serve as a future reference section for high-resolution studies of late Maastrichtian paleoclimatic change
Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth
During the Late Cretaceous and early Cenozoic the Earth experienced prolonged climatic cooling most likely caused by decreasing volcanic activity and atmospheric CO2 levels. However, the causes and mechanisms of subsequent major global warming culminating in the late Paleocene to Eocene greenhouse climate remain enigmatic. We present deep and intermediate water Nd-isotope records from the North and South Atlantic to decipher the control of the opening Atlantic Ocean on ocean circulation and its linkages to the evolution of global climate. The marked convergence of Nd-isotope signatures 59 million years ago indicates a major intensification of deep-water exchange between the North and South Atlantic, which coincided with the turning point of deep-water temperatures towards early Paleogene warming. We propose that this intensification of Atlantic overturning circulation in concert with increased atmospheric CO2 from continental rifting marked a climatic tipping point contributing to a more efficient distribution of heat over the planet
The QUIET Instrument
The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the
Cosmic Microwave Background, targeting the imprint of inflationary
gravitational waves at large angular scales (~ 1 degree). Between 2008 October
and 2010 December, two independent receiver arrays were deployed sequentially
on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal
planes use a highly compact design based on High Electron Mobility Transistors
(HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U,
and I in a single module. The 17-element Q-band polarimeter array, with a
central frequency of 43.1 GHz, has the best sensitivity (69 uK sqrt(s)) and the
lowest instrumental systematic errors ever achieved in this band, contributing
to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter
array has a sensitivity of 87 uK sqrt(s) at a central frequency of 94.5 GHz. It
has the lowest systematic errors to date, contributing at r < 0.01. The two
arrays together cover multipoles in the range l= 25-975. These are the largest
HEMT-based arrays deployed to date. This article describes the design,
calibration, performance of, and sources of systematic error for the
instrument
Exclusion Expected? Cardiac Slowing Upon Peer Exclusion Links Preschool Parent Representations to SchoolâAge Peer Relationships
Attachment theory proposes that childrenâs representations of interactions with caregivers guide informationâprocessing about others, bridging interpersonal domains. In a longitudinal study (N = 165), preschoolers (Mage = 5.19 years) completed the MacArthur Story Stem Battery to assess parent representations. At schoolâage (Mage = 8.42 years), children played a virtual ballgame with peers who eventually excluded them to track eventârelated cardiac slowing, a physiological correlate of rejection, especially when unexpected. At both ages, parents and teachers reported on peer and emotional problems. During exclusion versus inclusionârelated events, cardiac slowing was associated with greater positive parent representations and fewer emerging peer problems. Cardiac slowing served as a mediator between positive parent representations and peer problems, supporting a potential psychophysiological mechanism underlying the generalization of attachmentârelated representations to peer relationships
Newfoundland Neogene sediment drifts: transition from the Paleogene greenhouse to the modern icehouse
This workshop brought together specialists from various fields to develop a drilling proposal to fill the "Oligo-Miocene Gap" that exists in our understanding of the functions of Earth's systems. We propose to establish the first continuous high-deposition record of the Oligo-Miocene through new International Ocean Discovery Program (IODP) drilling in the North Atlantic to allow the development of a continuous Neogene cyclostratigraphy and to enhance our knowledge of Oligo-Miocene oceanâiceâclimate dynamics. The workshop was held in Heidelberg from 15 to 17 September 2014 funded by ESF (EARTHTIME EU), NSF, and the ECORD MagellanPlus Workshop Series Program. A total of 24 participants from six different countries (Australia, France, Germany, the Netherlands, United Kingdom, and United States) attended the workshop, including several early career stage researchers. We discussed certain aspects of Cenozoic paleoceanography and paleoclimate and how the gaps in the Oligo-Miocene could be filled using scientific drilling. The ultimate goal of the workshop (to submit a pre-proposal to IODP) was achieved (IODP Proposal 874-pre was submitted 1 October 2014). Our workshop consisted of overview presentations followed by self-selected breakout groups that discussed different topics and produced text and figures for the proposal. Here, we give a short overview of the major topics discussed during the workshop and the scientific goals presented in the resulting IODP pre-proposal
A pedestrian's view on interacting particle systems, KPZ universality, and random matrices
These notes are based on lectures delivered by the authors at a Langeoog
seminar of SFB/TR12 "Symmetries and universality in mesoscopic systems" to a
mixed audience of mathematicians and theoretical physicists. After a brief
outline of the basic physical concepts of equilibrium and nonequilibrium
states, the one-dimensional simple exclusion process is introduced as a
paradigmatic nonequilibrium interacting particle system. The stationary measure
on the ring is derived and the idea of the hydrodynamic limit is sketched. We
then introduce the phenomenological Kardar-Parisi-Zhang (KPZ) equation and
explain the associated universality conjecture for surface fluctuations in
growth models. This is followed by a detailed exposition of a seminal paper of
Johansson that relates the current fluctuations of the totally asymmetric
simple exclusion process (TASEP) to the Tracy-Widom distribution of random
matrix theory. The implications of this result are discussed within the
framework of the KPZ conjecture.Comment: 52 pages, 4 figures; to appear in J. Phys. A: Math. Theo
- âŠ