1,011 research outputs found

    Cost-effectiveness of adjuvant paclitaxel and trastuzumab for early-stage node-negative, HER2-positive breast cancer

    Get PDF
    Adjuvant paclitaxel and trastuzumab has been shown to be an effective regimen with low risk of cancer recurrence and treatment-related toxicities in early-stage node-negative, HER2-positive breast cancer. We investigated the cost-effectiveness of this regimen

    Cost-effectiveness of adjuvant FOLFOX and 5FU/LV chemotherapy for patients with stage II colon cancer

    Get PDF
    Purpose. We evaluated the cost-effectiveness of adjuvant chemotherapy using 5-fluorouracil, leucovorin (5FU/LV), and oxaliplatin (FOLFOX) compared with 5FU/LV alone and 5FU/LV compared with observation alone for patients who had resected stage II colon cancer. Methods. We developed 2 Markov models to represent the adjuvant chemotherapy and follow-up periods and a single Markov model to represent the observation group. We used calibration to estimate the transition probabilities among different toxicity levels. The base case considered 60-year-old patients who had undergone an uncomplicated hemicolectomy for stage II colon cancer and were medically fit to receive 6 months of adjuvant chemotherapy. We measured health outcomes in quality-adjusted life-years (QALYs) and estimated costs using 2007 US dollars. Results. In the base case, adjuvant chemotherapy of the FOLFOX regimen had an incremental cost-effectiveness ratio (ICER) of 54,359/QALYcomparedwiththe5FU/LVregimen,andthe5FU/LVregimenhadanICERof54,359/QALY compared with the 5FU/LV regimen, and the 5FU/LV regimen had an ICER of 14,584/QALY compared with the observation group from the third-party payer perspective. The ICER values were most sensitive to 5-year relapse probability, cost of adjuvant chemotherapy, and the discount rate for the FOLFOX arm, whereas the ICER value of 5FU/LV was most sensitive to the 5-year relapse probability, 5-year survival probability, and the relapse cost. The probabilistic sensitivity analysis indicates that the ICER of 5FU/LV is less than 50,000/QALYwithaprobabilityof99.6250,000/QALY with a probability of 99.62%, and the ICER of FOLFOX as compared with 5FU/LV is less than 50,000/QALY and $100,000/QALY with a probability of 44.48% and 97.24%, respectively. Conclusion. Although adjuvant chemotherapy with 5FU/LV is cost-effective at all ages for patients who have undergone an uncomplicated hemicolectomy for stage II colon cancer, FOLFOX is not likely to be cost-effective as compared with 5FU/LV

    Carotenoid metabolism: New insights and synthetic approaches

    Get PDF
    Carotenoids are well-known isoprenoid pigments naturally produced by plants, algae, photosynthetic bacteria as well as by several heterotrophic microorganisms. In plants, they are synthesized in plastids where they play essential roles in light-harvesting and in protecting the photosynthetic apparatus from reactive oxygen species (ROS). Carotenoids are also precursors of bioactive metabolites called apocarotenoids, including vitamin A and the phytohormones abscisic acid (ABA) and strigolactones (SLs). Genetic engineering of carotenogenesis made possible the enhancement of the nutritional value of many crops. New metabolic engineering approaches have recently been developed to modulate carotenoid content, including the employment of CRISPR technologies for single-base editing and the integration of exogenous genes into specific “safe harbors” in the genome. In addition, recent studies revealed the option of synthetic conversion of leaf chloroplasts into chromoplasts, thus increasing carotenoid storage capacity and boosting the nutritional value of green plant tissues. Moreover, transient gene expression through viral vectors allowed the accumulation of carotenoids outside the plastid. Furthermore, the utilization of engineered microorganisms allowed efficient mass production of carotenoids, making it convenient for industrial practices. Interestingly, manipulation of carotenoid biosynthesis can also influence plant architecture, and positively impact growth and yield, making it an important target for crop improvements beyond biofortification. Here, we briefly describe carotenoid biosynthesis and highlight the latest advances and discoveries related to synthetic carotenoid metabolism in plants and microorganisms

    Light‐limited photosynthesis under energy‐saving film decreases eggplant yield

    Get PDF
    Glasshouse films with adjustable light transmittance and energy‐efficient designs have the potential to reduce (up to 80%) the high energy cost for greenhouse horticulture operations. Whether these films compromise the quantity and quality of light transmission for photosynthesis and crop yield remains unclear. A “Smart Glass” film ULR‐80 (SG) was applied to a high‐tech greenhouse horticulture facility, and two experimental trials were conducted by growing eggplant (Solanum melongena) using commercial vertical cultivation and management practices. SG blocked 85% of ultraviolet (UV), 58% of far‐red, and 26% of red light, leading to an overall reduction of 19% in photosynthetically active radiation (PAR, 380–699 nm) and a 25% reduction in total season fruit yield. There was a 53% (season mean) reduction in net short‐wave radiation (radiometer range, 385–2,105 nm upward; 295–2,685 nm downward) that generated a net reduction of 8% in heat load and reduced water and nutrient consumption by 18%, leading to improved energy and resource use efficiency. Eggplant adjusted to the altered SG light environment via decreased maximum light‐saturated photosynthetic rates (Amax) and lower xanthophyll de‐epoxidation state. The shift in light characteristics under SG led to reduced photosynthesis, which may have reduced source (leaf) to sink (fruit) carbon distribution, increased fruit abortion and decreased fruit yield, but did not affect nutritional quality. We conclude that SG increases energy and resource use efficiency, without affecting fruit quality, but the reduction in photosynthesis and eggplant yield is high. The solution is to re‐engineer the SG to increase penetration of UV and PAR, while maintaining blockage of glasshouse heat gain

    Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    Full text link
    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.Comment: 14 page

    A comprehensive methodology for determining the most informative mammographic features

    Get PDF
    This study aims to determine the most informative mammographic features for breast cancer diagnosis using mutual information (MI) analysis. Our Health Insurance Portability and Accountability Act-approved database consists of 44,397 consecutive structured mammography reports for 20,375 patients collected from 2005 to 2008. The reports include demographic risk factors (age, family and personal history of breast cancer, and use of hormone therapy) and mammographic features from the Breast Imaging Reporting and Data System lexicon. We calculated MI using Shannon's entropy measure for each feature with respect to the outcome (benign/malignant using a cancer registry match as reference standard). In order to evaluate the validity of the MI rankings of features, we trained and tested naïve Bayes classifiers on the feature with tenfold cross-validation, and measured the predictive ability using area under the ROC curve (AUC). We used a bootstrapping approach to assess the distributional properties of our estimates, and the DeLong method to compare AUC. Based on MI, we found that mass margins and mass shape were the most informative features for breast cancer diagnosis. Calcification morphology, mass density, and calcification distribution provided predictive information for distinguishing benign and malignant breast findings. Breast composition, associated findings, and special cases provided little information in this task. We also found that the rankings of mammographic features with MI and AUC were generally consistent. MI analysis provides a framework to determine the value of different mammographic features in the pursuit of optimal (i.e., accurate and efficient) breast cancer diagnosis. © 2013 Society for Imaging Informatics in Medicine

    Prevalence of Subclinical Papillary Thyroid Cancer by Age: Meta-analysis of Autopsy Studies

    Get PDF
    It is not known how underlying subclinical papillary thyroid cancer (PTC) differs by age. This meta-analysis of autopsy studies investigates how subclinical PTC prevalence changes over the lifetime. Methods: We searched PubMed, Embase, and Web of Science databases from inception to May 2021 for studies that reported the prevalence of PTC found at autopsy. Two investigators extracted the number of subclinical PTCs detected in selected age groups and extent of examination. A quality assessment tool was used to assess bias. Logistic regression models with random intercepts were used to pool the age-specific subclinical PTC prevalence estimates. Results: Of 1773 studies screened, 16 studies with age-specific data met the inclusion criteria (n = 6286 autopsies). The pooled subclinical PTC prevalence was 12.9% (95% CI 7.8-16.8) in whole gland and 4.6% (2.5- 6.6) in partial gland examination. Age-specific prevalence estimates were ≀40 years, 11.5% (6.8-16.1); 41-60 years, 12.1% (7.6-16.5); 61-80 years, 12.7% (8-17.5); and 81+ years, 13.4% (7.9-18.9). Sex did not affect age-specific prevalence and there was no difference in prevalence between men and women in any age group. In the regression model, the OR of prevalence increasing by age group was 1.06 (0.92-1.2, P = .37). Conclusion: This meta-analysis shows the prevalence of subclinical PTC is stable across the lifespan. There is not a higher subclinical PTC prevalence in middle age, in contrast to higher observed incidence rates in this age group. These findings offer unique insights into the prevalence of subclinical PTC and its relationship to age

    Effect of time to diagnostic testing for breast, cervical, and colorectal cancer screening abnormalities on screening efficacy: A modeling study

    Get PDF
    Background: Patients who receive an abnormal cancer screening result require follow-up for diagnostic testing, but the time to follow-up varies across patients and practices. Methods: We used a simulation study to estimate the change in lifetime screening benefits when time to follow-up for breast, cervical, and colorectal cancers was increased. Estimates were based on four independently developed microsimulation models that each simulated the life course of adults eligible for breast (women ages 50–74 years), cervical (women ages 21–65 years), or colorectal (adults ages 50–75 years) cancer screening. We assumed screening based on biennial mammography for breast cancer, triennial Papanicolaou testing for cervical cancer, and annual fecal immunochemical testing for colorectal cancer. For each cancer type, we simulated diagnostic testing immediately and at 3, 6, and 12 months after an abnormal screening exam. Results: We found declines in screening benefit with longer times to diagnostic testing, particularly for breast cancer screening. Compared to immediate diagnostic testing, testing at 3 months resulted in reduced screening benefit, with fewer undiscounted life years gained per 1,000 screened (breast: 17.3%, cervical: 0.8%, colorectal: 2.0% and 2.7%, from two colorectal cancer models), fewer cancers prevented (cervical: 1.4% fewer, colorectal: 0.5% and 1.7% fewer, respectively), and, for breast and colorectal cancer, a less favorable stage distribution. Conclusions: Longer times to diagnostic testing after an abnormal screening test can decrease screening effectiveness, but the impact varies substantially by cancer type. Impact: Understanding the impact of time to diagnostic testing on screening effectiveness can help inform quality improvement efforts. Cancer Epidemiol Biomarkers Prev; 27(2); 158–64. 2017 AACR
    • 

    corecore