66 research outputs found

    Wireless Accelerometers for Early Detection of Restenosis

    Get PDF
    AbstractThe goal of this paper is to use accelerometers as an early detection of restenosis. Restenosis (re-narrowing of the blood vessel) typically occurs within 3-6 months after the implantation of a stent. Finite element modelling of an occluded blood vessel showed that eddies along with an increase in velocity occur around the occlusion. In this paper a wireless accelerometer device was used to detect an occlusion. A human phantom model was used to mimic the wireless transmission capabilities of the system through human muscle ex-vivo. Fast Fourier transform results from the accelerometer showed that a non-occluded blood vessel had significant peaks >15Hz, whereas an occluded blood vessel had peaks <15Hz, which provides a signature template for detecting restenosis. The results of the FEM and human phantom experiments show that an accelerometer sensor is capable of detecting restenosis

    Abbreviated MDS-UPDRS for Remote Monitoring in PD Identified Using Exhaustive Computational Search

    Get PDF
    Background. The Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) comprises 50 items, consisting of historical questions and motor ratings, typically taking around 30 minutes to complete. We sought to identify an abbreviated version that could facilitate use in clinical practice or used remotely via telemedicine. Methods. To create an 8-item version we conducted an “exhaustive search” of all possible subsets. We measured explained variance in comparison to the 50-item version using linear regression, with the “optimal” subset maximising this while also meeting remote assessment practicality constraints. The subset was identified using a dataset collected by the Parkinson’s Progression Markers Initiative and validated using an MDS Non-Motor Symptoms Scale validation study dataset. Results. The optimal remote version comprised items from all parts of the MDS-UPDRS and was found to act as an unbiased estimator of the total 50-item score. This version had an explained variance score of 0.844 and was highly correlated with the total MDS-UPDRS score (Pearson’s r = 0.919, p -value &lt;0.0001). Another subset that maximised explained variance score without adhering to remote assessment practicality constraints provided similar results. Conclusion. This result demonstrates that the total scores of an abbreviated form identified by computational statistics had high agreement with the MDS-UPDRS total score. Whilst it cannot capture the richness of information of the full MDS-UPDRS, it can be used to create a total score where practicality limits the application of the full MDS-UPDRS, such as remote monitoring. Further validation will be required, including in specific subgroups and advanced disease stages, and full validation of clinimetric properties

    Disease decreases variation in host community structure in an old-field grassland

    Full text link
    Disease may modulate variation in host community structure by modifying the interplay of deterministic and stochastic processes. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation in structure among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the duration of fungicide exposure and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. Despite changes in structure of the plant communities over the experiment’s three years, the effects of disease reduction on plant richness and biomass were consistent across years. However, disease reduction did not reduce variation in host community structure, providing little evidence for ecological selection by competition or other deterministic processes. Instead, disease reduction tended to amplify variation in host community structure among replicate communities (i.e., within fungicide treatment groups), suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure

    Designed Synthesis of 3D Covalent Organic Frameworks

    Get PDF
    Three-dimensional covalent organic frameworks (3D COFs) were synthesized by targeting two nets based on triangular and tetrahedral nodes: ctn and bor. The respective 3D COFs were synthesized as crystalline solids by condensation reactions of tetrahedral tetra(4-dihydroxyborylphenyl) methane or tetra(4-dihydroxyborylphenyl)silane and by co-condensation of triangular 2,3,6,7,10,11-hexahydroxytriphenylene. Because these materials are entirely constructed from strong covalent bonds (C-C, C-O, C-B, and B-O), they have high thermal stabilities (400° to 500°C), and they also have high surface areas (3472 and 4210 square meters per gram for COF-102 and COF-103, respectively) and extremely low densities (0.17 grams per cubic centimeter)

    Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens

    Get PDF
    The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141+ DC subset. CD141+ DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-ÎČ, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c+ DC subset. Polyinosine-polycytidylic acid (poly I:C)–activated CD141+ DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8+ cytotoxic T lymphocytes than poly I:C–activated CD1c+ DCs. Importantly, CD141+ DCs, but not CD1c+ DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141+ DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8α+ DC subset. The data demonstrate a role for CD141+ DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens
    • 

    corecore