239 research outputs found

    Mindlessness Revisited: Sequential Request Techniques Foster Compliance by Draining Self-control Resources

    Get PDF
    The present research extends previous findings suggesting that sequential request techniques, such as the Foot-in-the-Door (FITD) or Door-in-the-Face (DITF) technique, are primarily effective under conditions conducive of mindlessness. We forward that this mindlessness may be the product of the influence technique itself. More specifically, based on the notion of self-control as a limited resource, we hypothesize that actively responding to the initial request-phase of a FITD-compliance gaining procedure drains the target of his/her self-regulatory resources, thus creating the mindlessness so often observed in social influence settings. This resource depletion opens the door for compliance with the target request. The results were in line with these expectations. More specifically, we observed that active responding to an initial request of a FITD technique reduced the availability of self-regulatory resources. This state of resource depletion mediated the effect of the technique on behavioral compliance. In addition, the results of this study ruled out the alternate explanation that the effects were attributable to mood or a general tendency for acquiescence

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    B Cell Tolerance

    No full text

    Speed cells in the medial entorhinal cortex

    No full text
    Grid cells in the medial entorhinal cortex have spatial firing fields that repeat periodically in a hexagonal pattern. When animals move, activity is translated between grid cells in accordance with the animal's displacement in the environment. For this translation to occur, grid cells must have continuous access to information about instantaneous running speed. However, a powerful entorhinal speed signal has not been identified. Here we show that running speed is represented in the firing rate of a ubiquitous but functionally dedicated population of entorhinal neurons distinct from other cell populations of the local circuit, such as grid, head-direction and border cells. These 'speed cells' are characterized by a context-invariant positive, linear response to running speed, and share with grid cells a prospective bias of ∼50-80 ms. Our observations point to speed cells as a key component of the dynamic representation of self-location in the medial entorhinal cortex.Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Kavli Institute For Systems Neuroscience; NoruegaFil: Carmichael, James E.. Norwegian University of Science and Technology. Kavli Institute For Systems Neuroscience; NoruegaFil: Moser, May Britt. Norwegian University of Science and Technology. Kavli Institute For Systems Neuroscience; NoruegaFil: Moser, Edvard I.. Norwegian University of Science and Technology. Kavli Institute For Systems Neuroscience; Norueg
    corecore