17 research outputs found

    Rolling Deck to Repository: Supporting the marine science community with data management services from academic research expeditions

    Get PDF
    Direct observations of the oceans acquired on oceanographic research ships operated across the international community support fundamental research into the many disciplines of ocean science and provide essential information for monitoring the health of the oceans. A comprehensive knowledge base is needed to support the responsible stewardship of the oceans with easy access to all data acquired globally. In the United States, the multidisciplinary shipboard sensor data routinely acquired each year on the fleet of coastal, regional and global ranging vessels supporting academic marine research are managed by the Rolling Deck to Repository (R2R, rvdata.us) program. With over a decade of operations, the R2R program has developed a robust routinized system to transform diverse data contributions from different marine data providers into a standardized and comprehensive collection of global-ranging observations of marine atmosphere, ocean, seafloor and subseafloor properties that is openly available to the international research community. In this article we describe the elements and framework of the R2R program and the services provided. To manage all expeditions conducted annually, a fleet-wide approach has been developed using data distributions submitted from marine operators with a data management workflow designed to maximize automation of data curation. Other design goals are to improve the completeness and consistency of the data and metadata archived, to support data citability, provenance tracking and interoperable data access aligned with FAIR (findable, accessible, interoperable, reusable) recommendations, and to facilitate delivery of data from the fleet for global data syntheses. Findings from a collection-level review of changes in data acquisition practices and quality over the past decade are presented. Lessons learned from R2R operations are also discussed including the benefits of designing data curation around the routine practices of data providers, approaches for ensuring preservation of a more complete data collection with a high level of FAIRness, and the opportunities for homogenization of datasets from the fleet so that they can support the broadest re-use of data across a diverse user community

    Mass spectrometric investigations to obtain the first direct comparisons of endogenous breath and blood volatile organic compound concentrations in healthy volunteers

    No full text
    Volatile organic compounds (VOCs) in breath could be clinically useful for the early detection and diagnosis of diseases, physiological disorders and therapeutic monitoring. However, it is crucial to compare the reliability and precision of breath measurements with those from blood if endogenous VOCs on breath are to be used as biomarkers. Few studies have been undertaken to investigate this, none of which relate to endogenous VOCs in freely breathing subjects. Here we establish the reliability and precision of breath measurements to determine endogenous VOC concentrations in comparison to blood measurements in order to assess the viability of using breath measurements for potential diagnostic and screening purposes. Acetone and isoprene concentration levels in the breath, radial arterial blood and peripheral venous blood and in vivo arterial blood/breath ratios for freely breathing subjects have been determined using mass spectrometric techniques. Mean (range) breath concentrations in parts per billion by volume are 1090 (515-2335) for acetone and 465 (308-702) for isoprene. The mean (range) blood concentrations are: for acetone in radial arterial blood 26 (10-73) μmol/l and in peripheral venous blood 18 (9-39) μmol/l; for isoprene in radial arterial blood 6.8 (3.7-11) μmol/l and in peripheral venous blood 14 (5.5-30) μmol/l. Arterial blood/breath ratios mean (range) are 580 (320-860) for acetone and 0.38 (0.19-0.58) for isoprene. An important finding is that the coefficients of repeatability as a percentage of mean are less than 30% in breath but greater than 70% in blood. This study suggests that breath VOC measurements could provide a more consistent measure for investigating underlying physiological function or pathology than single blood measurements. © 2009 Elsevier B.V. All rights reserved

    DataSheet_1_Rolling Deck to Repository: Supporting the marine science community with data management services from academic research expeditions.docx

    No full text
    Direct observations of the oceans acquired on oceanographic research ships operated across the international community support fundamental research into the many disciplines of ocean science and provide essential information for monitoring the health of the oceans. A comprehensive knowledge base is needed to support the responsible stewardship of the oceans with easy access to all data acquired globally. In the United States, the multidisciplinary shipboard sensor data routinely acquired each year on the fleet of coastal, regional and global ranging vessels supporting academic marine research are managed by the Rolling Deck to Repository (R2R, rvdata.us) program. With over a decade of operations, the R2R program has developed a robust routinized system to transform diverse data contributions from different marine data providers into a standardized and comprehensive collection of global-ranging observations of marine atmosphere, ocean, seafloor and subseafloor properties that is openly available to the international research community. In this article we describe the elements and framework of the R2R program and the services provided. To manage all expeditions conducted annually, a fleet-wide approach has been developed using data distributions submitted from marine operators with a data management workflow designed to maximize automation of data curation. Other design goals are to improve the completeness and consistency of the data and metadata archived, to support data citability, provenance tracking and interoperable data access aligned with FAIR (findable, accessible, interoperable, reusable) recommendations, and to facilitate delivery of data from the fleet for global data syntheses. Findings from a collection-level review of changes in data acquisition practices and quality over the past decade are presented. Lessons learned from R2R operations are also discussed including the benefits of designing data curation around the routine practices of data providers, approaches for ensuring preservation of a more complete data collection with a high level of FAIRness, and the opportunities for homogenization of datasets from the fleet so that they can support the broadest re-use of data across a diverse user community.</p
    corecore