46 research outputs found

    The semileptonic B->pi decay in a Constituent Quark-Meson model

    Full text link
    We evaluate the form factors describing the exclusive decay B-> pi l nu by using a Constituent Quark-Meson model based on an effective quark-meson Lagrangian (CQM). The model allows for an expansion in the pion momenta and we consider terms up to the first order in the pion field derivatives. We compute the leading terms in the soft pion limit and consider corrections to this limit.Comment: 6 pages, 3 figures, LaTeX (uses aps, epsf, revtex), formula 26 corrected, discussion enlarged, references updated and other minor change

    Nitric oxide and cyclic nucleotides: Their roles in junction dynamics and spermatogenesis

    Get PDF
    Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    Combined pre-supernova alert system with KamLAND and Super-Kamiokande

    Get PDF
    Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15 M⊙ star within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance

    The Cost of Learning Directed Cuts

    No full text

    Common anti-platelet therapies modulate procoagulant phospholipids in arterial disease

    No full text
    Enzymatically oxygenated phospholipids (eoxPL) formed by lipoxygenases (LOX) and cyclooxygenase (COX) in platelets and leukocytes are pro-coagulant in multiple model systems. However, their generation in arterial thrombotic disease, and how their levels are modulated by common therapies is unknown. Here, eoxPL were first characterized in isolated platelets and leukocytes from an arterial vascular disease cohort, a healthy cohort administered low dose aspirin, and from retrieved human arterial thrombi. In both cohorts, aspirin reduced platelet COX-1-derived eoxPL, while elevating diacyl 12-LOX-derived eoxPL in males, through enhanced Lands’ cycle esterification. Conversely, P2Y12 inhibition reduced 12-LOX-derived eoxPL in leukocytes. Complex aspirin-dependent gender and seasonal effects on platelet eoxPL were seen in healthy subjects. Limb or coronary (STEMI) thrombi showed a platelet eoxPL signature while carotid thrombi had a white cell profile. Mice genetically lacking leukocyte 12/15-LOX, which are deficient in eoxPL, generated smaller carotid thrombi in vivo. In summary, pro-coagulant eoxPL generation is altered in human arterial vascular disease by commonly used cardiovascular therapies. These changes to the phospholipid composition of blood cells in humans at risk of thrombotic events may be clinically significant where the pro-coagulant membrane plays a central but poorly understood role in driving elevated thrombotic risk
    corecore