96 research outputs found

    Various correlations in a Heisenberg XXZ spin chain both in thermal equilibrium and under the intrinsic decoherence

    Full text link
    In this paper we discuss various correlations measured by the concurrence (C), classical correlation (CC), quantum discord (QD), and geometric measure of discord (GMD) in a two-qubit Heisenberg XXZ spin chain in the presence of external magnetic field and Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interaction. Based on the analytically derived expressions for the correlations for the cases of thermal equilibrium and the inclusion of intrinsic decoherence, we discuss and compare the effects of various system parameters on the correlations in different cases. The results show that the anisotropy Jz is considerably crucial for the correlations in thermal equilibrium at zero temperature limit but ineffective under the consideration of the intrinsic decoherence, and these quantities decrease as temperature T rises on the whole. Besides, J turned out to be constructive, but B be detrimental in the manipulation and control of various quantities both in thermal equilibrium and under the intrinsic decoherence which can be avoided by tuning other system parameters, while D is constructive in thermal equilibrium, but destructive in the case of intrinsic decoherence in general. In addition, for the initial state Ψ1(0)>=12(01>+10>)|\Psi_1(0) > = \frac{1}{\sqrt{2}} (|01 > + |10 >), all the correlations except the CC, exhibit a damping oscillation to a stable value larger than zero following the time, while for the initial state Ψ2(0)>=12(00>+11>)|\Psi_2(0) > = \frac{1}{\sqrt{2}} (|00 > + |11 >), all the correlations monotonously decrease, but CC still remains maximum. Moreover, there is not a definite ordering of these quantities in thermal equilibrium, whereas there is a descending order of the CC, C, GMD and QD under the intrinsic decoherence with a nonnull B when the initial state is Ψ2(0)>|\Psi_2(0) >.Comment: 8 pages, 7 figure

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    Search for exclusive Higgs and Z boson decays to ϕγ and ργ with the ATLAS detector

    Get PDF
    A search for the exclusive decays of the Higgs and Z bosons to a φ or ρ meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of up to 35.6 fb−1 collected at √s = 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. These decays have been suggested as a probe of the Higgs boson couplings to light quarks. No significant excess of events is observed above the background, as expected from the Standard Model. Upper limits at 95% confidence level were obtained on the branching fractions of the Higgs boson decays to φγ and ργ of 4.8 × 10−4 and 8.8 × 10−4, respectively. The corresponding 95% confidence level upper limits for the Z boson decays are 0.9 × 10−6 and 25 × 10−6 for φγ and ργ, respectively

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Measurement of the top-quark mass using a leptonic invariant mass in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of the top-quark mass (mt) in the tt¯ → lepton + jets channel is presented, with an experimental technique which exploits semileptonic decays of b-hadrons produced in the top-quark decay chain. The distribution of the invariant mass mℓμ of the lepton, ℓ (with ℓ = e, μ), from the W-boson decay and the muon, μ, originating from the b-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract mt. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb−1 of s√ = 13 TeV pp collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is mt = 174.41 ± 0.39 (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Search for single vector-like B quark production and decay via B → bH(b¯b) in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for single production of a vector-like B quark decaying into a Standard Model b-quark and a Standard Model Higgs boson, which decays into a b¯b pair. The search is carried out in 139 fb−1 of √s = 13 TeV proton-proton collision data collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed, and mass-dependent exclusion limits at the 95% confidence level are set on the resonance production cross-section in several theoretical scenarios determined by the couplings cW, cZ and cH between the B quark and the Standard Model W, Z and Higgs bosons, respectively. For a vector-like B occurring as an isospin singlet, the search excludes values of cW greater than 0.45 for a B resonance mass (mB) between 1.0 and 1.2 TeV. For 1.2 TeV < mB < 2.0 TeV, cW values larger than 0.50–0.65 are excluded. If the B occurs as part of a (B, Y) doublet, the smallest excluded cZ coupling values range between 0.3 and 0.5 across the investigated resonance mass range 1.0 TeV < mB < 2.0 TeV

    Search for phenomena beyond the Standard Model in events with large b-jet multiplicity using the ATLAS detector at the LHC

    Get PDF
    A search is presented for new phenomena in events characterised by high jet multiplicity, no leptons (electrons or muons), and four or more jets originating from the fragmentation of b-quarks (b-jets). The search uses 139 fb−1 of √s = 13 TeV proton–proton collision data collected by the ATLAS experiment at the Large Hadron Collider during Run 2. The dominant Standard Model background originates from multijet production and is estimated using a datadriven technique based on an extrapolation from events with low b-jet multiplicity to the high b-jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits that constrain simplified models of R-parity-violating supersymmetry are determined. The exclusion limits reach 950 GeV in top-squark mass in the models considered
    corecore