212 research outputs found

    Human Transgene-Free Amniotic-Fluid-Derived Induced Pluripotent Stem Cells for Autologous Cell Therapy

    Full text link
    The establishment of a reliable prenatal source of autologous, transgene-free progenitor cells has enormous potential in the development of regenerative-medicine-based therapies for infants born with devastating birth defects. Here, we show that a largely CD117-negative population of human amniotic fluid mesenchymal stromal cells (AF-MSCs) obtained from fetuses with or without prenatally diagnosed anomalies are readily abundant and have limited baseline differentiation potential when compared with bone-marrow-derived MSCs and other somatic cell types. Nonetheless, the AF-MSCs could be easily reprogrammed into induced pluripotent stem cells (iPSCs) using nonintegrating Sendai viral vectors encoding for OCT4, SOX2, KLF4, and cMYC. The iPSCs were virtually indistinguishable from human embryonic stem cells in multiple assays and could be used to generate a relatively homogeneous population of neural progenitors, expressing PAX6, SOX2, SOX3, Musashi-1, and PSA-NCAM, for potential use in neurologic diseases. Further, these neural progenitors showed engraftment potential in vivo and were capable of differentiating into mature neurons and astrocytes in vitro. This study demonstrates the usefulness of AF-MSCs as an excellent source for the generation of human transgene-free iPSCs ideally suited for autologous perinatal regenerative medicine applications.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140204/1/scd.2014.0110.pd

    Survival and major neurodevelopmental impairment in extremely low gestational age newborns born 1990–2000: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is important to determine if rates of survival and major neurodevelopmental impairment in extremely low gestational age newborns (ELGANs; infants born at 23–27 weeks gestation) are changing over time.</p> <p>Methods</p> <p>Study infants were born at 23 to 27 weeks of gestation without congenital anomalies at a tertiary medical center between July 1, 1990 and June 30, 2000, to mothers residing in a thirteen-county region in North Carolina. Outcomes at one year adjusted age were compared for two epochs of birth: epoch 1, July 1, 1990 to June 30, 1995; epoch 2, July 1, 1995 to June 30, 2000. Major neurodevelopmental impairment was defined as cerebral palsy, Bayley Scales of Infant Development Mental Developmental Index more than two standard deviations below the mean, or blindness.</p> <p>Results</p> <p>Survival of ELGANs, as a percentage of live births, was 67% [95% confidence interval: (61, 72)] in epoch 1 and 71% (65, 75) in epoch 2. Major neurodevelopmental impairment was present in 20% (15, 27) of survivors in epoch 1 and 14% (10, 20) in epoch 2. When adjusted for gestational age, survival increased [odds ratio 1.5 (1.0, 2.2), p = .03] and major neurodevelopmental impairment decreased [odds ratio 0.54 (0.31, 0.93), p = .02] from epoch 1 to epoch 2.</p> <p>Conclusion</p> <p>The probability of survival increased while that of major neurodevelopmental impairment decreased during the 1990's in this regionally based sample of ELGANs.</p

    The Two States of Star Forming Clouds

    Full text link
    We examine the effects of self-gravity and magnetic fields on supersonic turbulence in isothermal molecular clouds with high resolution simulations and adaptive mesh refinement. These simulations use large root grids (512^3) to capture turbulence and four levels of refinement to capture high density, for an effective resolution of 8,196^3. Three Mach 9 simulations are performed, two super-Alfv\'enic and one trans-Alfv\'enic. We find that gravity splits the clouds into two populations, one low density turbulent state and one high density collapsing state. The low density state exhibits properties similar to non-self-gravitating in this regime, and we examine the effects of varied magnetic field strength on statistical properties: the density probability distribution function is approximately lognormal; velocity power spectral slopes decrease with field strength; alignment between velocity and magnetic field increases with field; the magnetic field probability distribution can be fit to a stretched exponential. The high density state is characterized by self-similar spheres; the density PDF is a power-law; collapse rate decreases with increasing mean field; density power spectra have positive slopes, P({\rho},k) \propto k; thermal-to-magnetic pressure ratios are unity for all simulations; dynamic-to-magnetic pressure ratios are larger than unity for all simulations; magnetic field distribution is a power-law. The high Alfv\'en Mach numbers in collapsing regions explain recent observations of magnetic influence decreasing with density. We also find that the high density state is found in filaments formed by converging flows, consistent with recent Herschel observations. Possible modifications to existing star formation theories are explored.Comment: 19 pages, 20 figure

    The Interaction of N-Acylhomoserine Lactone Quorum Sensing Signaling Molecules with Biological Membranes: Implications for Inter-Kingdom Signaling

    Get PDF
    The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets.The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed.Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor

    New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Get PDF
    A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies

    The Tyrphostin Agent AG490 Prevents and Reverses Type 1 Diabetes in NOD Mice

    Get PDF
    <div><h3>Background</h3><p>Recent studies in the NOD (non-obese diabetic) mouse model of type 1 diabetes (T1D) support the notion that tyrosine kinase inhibitors have the potential for modulating disease development. However, the therapeutic effects of AG490 on the development of T1D are unknown.</p> <h3>Materials and Methods</h3><p>Female NOD mice were treated with AG490 (i.p, 1 mg/mouse) or DMSO starting at either 4 or 8 week of age, for five consecutive week, then once per week for 5 additional week. Analyses for the development and/or reversal of diabetes, insulitis, adoptive transfer, and other mechanistic studies were performed.</p> <h3>Results</h3><p>AG490 significantly inhibited the development of T1D (p = 0.02, p = 0.005; at two different time points). Monotherapy of newly diagnosed diabetic NOD mice with AG490 markedly resulted in disease remission in treated animals (n = 23) in comparision to the absolute inability (0%; 0/10, p = 0.003, Log-rank test) of DMSO and sustained eugluycemia was maintained for several months following drug withdrawal. Interestingly, adoptive transfer of splenocytes from AG490 treated NOD mice failed to transfer diabetes to recipient NOD.<em>Scid</em> mice. CD4 T-cells as well as bone marrow derived dendritic cells (BMDCs) from AG490 treated mice, showed higher expression of Foxp3 (p<0.004) and lower expression of co-stimulatory molecules, respectively. Screening of the mouse immune response gene arrary indicates that expression of costimulaotry molecule Ctla4 was upregulated in CD4+ T-cell in NOD mice treated with AG490, suggesting that AG490 is not a negative regulator of the immune system.</p> <h3>Conclusion</h3><p>The use of such agents, given their extensive safety profiles, provides a strong foundation for their translation to humans with or at increased risk for the disease.</p> </div
    corecore