2,216 research outputs found

    Improved processing of microarray data using image reconstruction techniques

    Get PDF
    Spotted cDNA microarray data analysis suffers from various problems such as noise from a variety of sources, missing data, inconsistency, and, of course, the presence of outliers. This paper introduces a new method that dramatically reduces the noise when processing the original image data. The proposed approach recreates the microarray slide image, as it would have been with all the genes removed. By subtracting this background recreation from the original, the gene ratios can be calculated with more precision and less influence from outliers and other artifacts that would normally make the analysis of this data more difficult. The new technique is also beneficial, as it does not rely on the accurate fitting of a region to each gene, with its only requirement being an approximate coordinate. In experiments conducted, the new method was tested against one of the mainstream methods of processing spotted microarray images. Our method is shown to produce much less variation in gene measurements. This evidence is supported by clustering results that show a marked improvement in accuracy

    Copasetic analysis: Automated analysis of biological gene expression images

    Get PDF
    Copyright [2004] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In the past decade computational biology has come to the forefront of the public's perception with advancements in domain knowledge and a variety of analysis techniques. With the recent completion of projects like the human genome sequence, and the development of microarray chips it has become possible to simultaneously analyse expression levels for thousands of genes. Typically, a slide surface of less than 24 cm2, receptors for 30,000 genes can be printed, but currently the analysis process is a time consuming semi-autonomous step requiring human guidance. The paper proposes a framework, which facilitates automated processing of these images. This is supported by real world examples, which demonstrate the technique's capabilities along with results, which show a marked improvement over existing implementations

    A Monte Carlo Model for LET Spectra of 200 MeV Protons Used for Microelectronic Testing

    Get PDF
    The direct ionization Linear Energy Transfer (LET) for 200 MeV protons in silicon is much smaller than that for higher charged particles since LET increases as the square of the ion charge. However, occasionally the proton interacts with the silicon nuclei and produces a shower of fragments and a recoiling nucleus. When this happens, the LET produced is much greater than the direct ionization LET. Testing the single event effect susceptibility of components using energetic (200 MeV) protons is often the only viable option for system level testing commercial-off-the-shelf (COTS) avionics that have not been designed for space environments. However, the question of how a system tested with protons will perform in a heavy ion environment arises. Here the concern is not only with prediction of on-orbit upset rate, but also about possibility of on-orbit failures that were not observed during proton testing

    Low Bone Turnover in Chronic Kidney Disease is associated with decreased VEGF-A expression and osteoblast differentiation

    Get PDF
    Background: Low turnover bone (low bone formation rates (BFRs)) with decreased osteoblast number is common in patients with chronic kidney disease (CKD) and attributed to ‘over-suppression' of the parathyroid hormone (PTH) despite supra-physiologic levels. An alternative hypothesis is abnormal osteoblast differentiation, resulting in low BFRs due to reduced VEGF-A. Methods: We analyzed the expression of VEGF-A and mesenchymal stem cell (MSC) differentiation factors in freshly isolated bone marrow (BM) cells, and in BM cell-derived MSC in rats with different levels of BFRs and PTH (modulated by calcium and zoledronic acid). The regulators of VEGF in MSC were also determined. Results: VEGF-A expression was reduced in the BM cells from CKD vs. normal animals (p < 0.02). In BM-derived MSC from CKD, there were decreased osteoblast transcription factors and mineralization. In CKD animals, the BM VEGF-A expression was positively correlated with BFR (r = 0.80, p < 0.001). Reducing BFRs in CKD animals led to reductions in VEGF-A expression and osteoblast transcription factors regardless of the PTH level. We therefore examined other regulators of VEGF-A and found decreased expression of hypoxia-inducible factor-1α and the master transcription factor of antioxidants nuclear factor (erythroid-derived 2)-like 2 in CKD animals with low PTH. Conclusion: Low BFRs in CKD are associated with a basal decrease in VEGF-A expression in BM that may be driven by altered hypoxia and oxidative stress

    Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways

    Get PDF
    In patients with chronic kidney and end-stage renal diseases, the major risk factor for progression of arterial calcification is the presence of existing (baseline) calcification. Here, we tested whether calcification of arteries is extended from calcified vascular smooth muscle cells (VSMCs) to adjacent normal cells by matrix vesicle–induced alteration of cell signaling. Matrix vesicles isolated from VSMC of rats with chronic kidney disease were co-cultured with VSMCs from normal littermates. Endocytosis of vesicles by recipient cells was confirmed by confocal microscopy. The addition of cellular matrix vesicles with characteristics of exosomes and low fetuin-A content enhanced the calcification of recipient VSMC. Further, only cellular-derived matrix vesicles induced an increase in intracellular calcium ion concentration, NOX1 (NADPH oxidase) and the anti-oxidant superoxide dismutase-2 in recipient normal VSMC. The increase in intracellular calcium ion concentration was due to release from endoplasmic reticulum and partially attributed to the activation of both NOX1 and mitogen-activated protein kinase (MEK1 and Erk1/2) signaling, since inhibiting both pathways blocked the increase in intracellular calcium ion in recipient VSMC. In contrast, matrix vesicles isolated from the media had no effect on the intracellular calcium ion concentration or MEK1 signaling, and did not induce calcification. However, media matrix vesicles did increase Erk1/2, although not to the level of cellular matrix vesicles, and NOX1 expression. Blockade of NOX activity further inhibited the cellular matrix vesicle–induced accelerated calcification of recipient VSMC, suggesting a potential therapeutic role of such inhibition. Thus, addition of cellular-derived matrix vesicles from calcifying VSMC can accelerate calcification by inducing cell signaling changes and phenotypic alteration of recipient VSMC

    To pair or not to pair? Machine-learned explicitly-correlated electronic structure for NaCl in water

    Full text link
    The extent of ion pairing in solution is an important phenomenon to rationalise transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between the solvated ions. The relative stabilities of the paired and solvent separated states in the PMF are highly sensitive to the underlying potential energy surface. However direct application of accurate electronic structure methods to resolve this property is challenging, since long simulations are required. Leveraging developments in machine learning potentials and electronic structure methods, we obtain wavefunction based models with RPA and MP2 for the prototypical system of Na and Cl ions in water. We show that even among these methods, discrepancies in the PMF still remain, and also highlight shortcomings of density functional theory and classical force-field predictions. These models are primed for application to computationally intensive electrolyte properties including transport coefficients and even confined systems, all of which are highly sensitive to their chosen reference electronic structure method

    Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells

    Get PDF
    Calcium channel activity in vascular smooth muscle cells is a critical component during vascular calcification and formation of matrix vesicles. Here, we examined whether the blockade of L-type calcium channels inhibits these functions. Bovine vascular smooth muscle cells or rat aorta organ cultures were incubated in media known to promote calcification and treated with the L-type calcium channel inhibitors verapamil, nifedipine, or nimodipine. The phenylalkylamine, verapamil, significantly decreased calcification of the vascular smooth muscle cells and rat aorta, in a dose-dependent manner, whereas the dihydropyridines, nifedipine and nimodipine, had no effect. Furthermore, verapamil, but not nifedipine, significantly decreased the alkaline phosphatase activity of bovine vascular smooth muscle cells. Verapamil pretreatment of the cells also inhibited matrix vesicle alkaline phosphatase activity and reduced the ability of these matrix vesicles to subsequently calcify on a type I collagen extracellular matrix scaffold. As L-type channels are blocked by verapamil and dihydropyridines, we suggest that verapamil inhibits vascular smooth muscle mineralization and matrix vesicle activity by mechanisms other than the simple blockade of this calcium channel activity

    RhoA/Rho kinase (ROCK) alters fetuin-A uptake and regulates calcification in bovine vascular smooth muscle cells (BVSMC)

    Get PDF
    RhoA/Rho kinases (ROCK) play a critical role in vascular smooth muscle cell (VSMC) actin cytoskeleton organization, differentiation, and function and are implicated in the pathogenesis of cardiovascular disease. We have previously determined that an important step in the regulation of calcification is fetuin-A endocytosis, a process that is dependent on changes in the cytoskeleton, which, in turn, is known to be affected by the RhoA/ROCK signaling pathway. In the present study, bovine VSMC (BVSMC) were treated with the ROCK inhibitor Y-27632 or transfected with ROCK small interfering (si) RNA to knock down ROCK expression. Both conditions resulted in reduced actin stress fibers and increased Cy5-labeled fetuin-A uptake. Inhibition of ROCK by Y-27632 or siRNA also significantly increased BVSMC alkaline phosphatase (ALP) activity and calcification of BVSMC and rat aorta organ cultures. Cells were then incubated in calcification media in the presence or absence of Y-27632 and matrix vesicles (MV) isolated by collagenase digestion. These MV, isolated from BVSMC incubated with Y-27632, had increased ALP activity and increased ability of MV to subsequently calcify collagen by 66%. In contrast, activation of RhoA, which is upstream of ROCK, by transfecting plasmids encoding the dominant active Rho GTPase mutant (Rho-L63) led to decreased fetuin-A uptake and reduced calcification in BVSMC. These results demonstrate that the RhoA/ROCK signaling pathway is an important negative regulator of vascular calcification

    The evolution of parasite virulence under targeted culling and harvesting in wildlife and livestock

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: No data was required for this study.There is a clear need to understand the effect of human intervention on the evolution of infectious disease. In particular, culling and harvesting of both wildlife and managed livestock populations are carried out in a wide range of management practices, and they have the potential to impact the evolution of a broad range of disease characteristics. Applying eco-evolutionary theory we show that once culling/harvesting becomes targeted on specific disease classes, the established result that culling selects for higher virulence is only found when sufficient infected individuals are culled. If susceptible or recovered individuals are targeted, selection for lower virulence can occur. An important implication of this result is that when culling to eradicate an infectious disease from a population, while it is optimal to target infected individuals, the consequent evolution can increase the basic reproductive ratio of the infection, R0, and make parasite eradication more difficult. We show that increases in evolved virulence due to the culling of infected individuals can lead to excess population decline when sustainably harvesting a population. In contrast, culling susceptible or recovered individuals can select for decreased virulence and a reduction in population decline through culling. The implications to the evolution of virulence are typically the same in wildlife populations, that are regulated by the parasite, and livestock populations, that have a constant population size where restocking balances the losses due to mortality. However, the well-known result that vertical transmission selects for lower virulence and transmission in wildlife populations is less marked in livestock populations for parasites that convey long-term immunity since restocking can enhance the density of the immune class. Our work emphasizes the importance of understanding the evolutionary consequences of intervention strategies and the different ecological feedbacks that can occur in wildlife and livestock populations.Biotechnology and Biological Sciences Research Council (BBSRC)NS

    Roles of tetrahydrobiopterin in promoting tumor angiogenesis.

    Get PDF
    Nitric oxide (NO), which is derived from endothelial NO synthase (eNOS), provides crucial signals for angiogenesis in the tumor microenvironment. Tetrahydrobiopterin (BH4) is an absolute requirement for eNOS activity. In this study, we investigated whether this activation is both maintained by a wild-type Ras/phosphatidylinositol 3-kinase (PI3K)/Akt-positive feedback loop in endothelial cells and affects tumor angiogenesis. We found that supplementation of BH4 (via the pterin salvage pathway with Sep) increased Akt/eNOS phosphorylation in both human eNOS-transfected COS-7 cells and endothelial cells concomitant with increases in NO production, cell proliferation, migration, and tube formation. This augmentation was abrogated by a PI3K inhibitor. Sepiapterin (Sep) also increased GTP-bound wild-type Ras and PI3K/Akt/eNOS activation, which was prevented by the eNOS inhibitor, Nω-Nitro-L-arginine methyl ester (L-NAME). Furthermore, expression of GTP cyclohydrolase I (the rate-limiting enzyme in de novo BH4 synthesis) under doxycycline control potentiated in vivo tumorigenesis, tumor cell proliferation, as well as angiogenesis. Conversely, both switching off GTP cyclohydrolase I expression as well as inhibiting its enzymatic activity significantly decreased eNOS expression and tumor vascularization. This study demonstrates an important role for BH4 synthesis in angiogenesis by the activation of eNOS for NO production, which is maintained by a PI3K/Akt-positive feedback loop through effects on wild-type Ras in endothelial cells. Our findings suggest that BH4 synthesis may be a rational target for antiangiogenesis therapy for tumors
    corecore