
2004 8th International Conference on 
Control, Automation, Robotics and Vision 
Kunmlng, China, 6-9th December 2004 

"COPASETIC ANALYSIS": AUTOMATED ANALYSIS OF 
BIOLOGICAL GENE EXPRESSION IMAGES 

Karl Fraser", Paul O'Neill', Zidong Wang and Xiaohui Liu 
DISC, Brunei University, Uxbridge, Middlesex, UBB 3PH, UK 

Contact: xiaohui.liu@brunel.ac.uk 
Tel/Fax: +44 (0)1895203397/ +44 (0)1895251686 

Abstract 
In the past decade computational biology has 

come to the forefront of the public's perception with 
advancements in domain knowledge and a variety of 
analysis techniques. With the recent completion of 
projects like the human Genome sequence, and the 
development of microarray chips it has become 
possible to simultaneously analyse expression levels 
for thousands of genes. Typically, a slide surface of 

2 . less than 24cm , receptors for 30,000 genes can be 
printed, but currently the analysis process is a time 
consuming semi-autonomous step requiring human. 
guidance. The paper proposes a framework which 
facilitates automated processing of these images. 
This is supported by real world examples which 
demonstrate the technique's capabilities along with 
results which show a marked improvement over 
existing implementations. 

Introduction 

With the development of microarray technology it 
has become possible for biologists to analyse many 
thousands of genes simultaneously. A single 
microarray chip, can contain the genome of a whole 
organism, treated under different conditions. The 
chip can be analysed using various techniques, such 
as clustering [I], and modelling [2]. This is 
accomplished by a technique called 'competitive 
hybridisation', which is conducted on a microscopic 
scale [3]. Here, we provide a brief review of relevant· 
background material, for a morc detailed explanation 
readers may tind references [41 and [5] of interest. 

Once the genes have been identified, samples of 
their DNA can be printed onto a specially treated 
glass slide which is similar in dimensions to a 
standard microscope slide. This chip can then be used 
to detect the presence of these genes in the RNA 
extracted from cells which were treated under 
varying conditions. The chip is then digitised using a 
dual laser scanning device, producing a two-channel 
16bit grey-scale image. The gene receptor locations 
in this image (typically 16-20 pixels in diameter) are 
identified; their median intensity values are then 
measured and summarised as log! ratios across both 
channels. 

This type of analysis has many uses, an example 
of which is the comparison between cells for a 
patient before and after infection by a disease. If 
particular genes are used more after infection (highly 
expressed) then it can be surmised that these genes 
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may play an important role in the life cycle of this 
virus. 

Figure 1, shows a typical microarray slide, with a 
zoomed section across two full blocks of genes. Each 
spot on this image is about two tenths of a millimetre 
in diameter and represents a specific gene. The image 
measures approximately 5000x2000 pixels and 
requires 40MB of storage memory. Due partly to the 
size of the image produced and partly because of the 
inherent variation which can be expected of any 
biological process; the images produced are 
extremely noisy. This leads to a complex yet very 
interesting computer vision problem, whereby so far, 
complete automation of this analysis process has 
proved to be elusi ve. 

Figure I: Example slides from test dataset illustrating 
varying structure and noise elements. 

This paper proposes a framework which is 
designed around the flexible analysis of these images 
using no prior knowledge of the slide. Real 
microarray images are used to verify the 'performance 
of the system and also comparisons are made against 
analysis conducted by trained biologists using one of 
the dominant analysis packages. 

Background 

Feature detection is the process whereby either an 

algorithm or an operator categorises the pixels in the 
image as belonging to either a specific gene spot or 
the background. This consists of two distinct stages; 
the first 'spotting', such as the Bayesian approach 
proposed by Hartelius and Carstensen [6] which 
divides the imagery into manageable blocks. The 
second involves segmentation [6, 7] which c1assitles 
pixels in a region immediately surrounding a gene as 
belonging to either the foreground or background 
domains. 

Once the pixels for each spot have been 
identified, they can then be summarised as log2 
ratios. For a detailed comparison of many standard 
techniques used for this purpose, refer to [8]. 
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The large amount of time that has to be spent on 
manually processing the microarrays has lead to the 
recent interest in trying to fully automate the process. 
Bozinov and Rahnenfuhrer [9] proposed clustering 
the full image area in one step; however this is not 
computationally feasible with current processing 
power. To overcome these issues, Bozinov [10] 
proposed an abstraction of the k-means [11] 
technique whereby pre-defined centroids were 
chosen for both foreground and background, to 
which all pixel intensities could be assigned. 
Although the proposed abstraction [10] is portrayed 
as a clustering technique, it would be more accurately 
described as a simple assignment process between 
two classes. Unfortunately although k-means is able 
to choose centroids according to the dataset's 
characteristics, this approach is inherently biased 
towards outlying values (saturated pixels for 
example), and not the true region of interest (the 
foreground pixels). Other methods, such as the 
application of wavelets [12] and Markov random 
fields [13] show great promise, however, at this time 
they have only been attempted on what would be 
classified as 'good slides' (whereby the noise is not 
of an extreme nature). If these teChniques fail to 
determine the location of just one gene, the system 
will fail, thus having to fall back on user intervention 
in order to recover. 

Overall our work has been based on slides 
representing two underlying structures with varying 
degrees of noise, Combined, these consist of 10 
images, which were selected as they contained 
varying anomalies both in the background intensities 
and in the printed spot structure, In figure I, an 
image from these sets is displayed to highlight the 
varying structure, This example slide is also 
suggestive of the problems which are associated with 
the processing of this type of data, such as 
background artefacts and gene block misalignment. 
In the next section this paper will present a 
framework which has been established to facilitate 
the processing of these images. This is a challenging 

and important problem and as far as the authors are 
aware, it is the first time such a comprehensive 
framework has been applied to microarray image 
analysis. 

Copasetic Analysis Overview 
Copasetic Analysis (CA) is a framework in 

which automated microarray image analysis can be 
conducted, Unlike other techniques that have been 
proposed to this effect, it is not a rigid framework, in 
fact it is its modularity and adaptability that give it its 
robustness. In figure 2, a skeletal structure of this 
process is presented, showing the required stages 
from the original input images, through to calculating 
the gene spot logz ratios. In this diagram we can see 
there are four key parts which make up the CA 
process, which will be described more detail. 
Importantly, each of these parts and the processes 
within are goal orientated, which means that the 
techniques can be 'swapped out' to allow various 
computational tasks to be conducted. For example, in 
image layout if the method based on periodicity 
underperforms, an alternative, such as wavelet de
convolution could be utilised. Some stages are 
composed of combinations of existing and new 
techniques, such as the 'Data Services' stage, while 
others are novel algorithms like Copasetic Clustering 
[14] which facilitate the application of existing 
clustering techniques to a previously infeasible 
dataset. Another· interesting point is the adaptability 
of the framework when things do not quite go as 
planned, in the above example where one method 
underperforms, it could be that the parameter settings 
were corrupted, in this case it would be preferable to 
backtrack to a previous step and try again. This 
backtracking capability is managed by a quality 
assessment process which is pcrformed at the 
completion of each component. If the quality 
assessment process determines that the data itself 
could be improved, it can request a different view of 
the data from the Image Transformation Engine 
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Figure 3: The horizontal profiles aligned to the raw imagery. 

(ITE). An example of this would be the application 
of a low-pass filter to the data if a high background 
was detected as being detrimental to the analysis. 
This framework is designed to process images which 
have some form of regular structure like that found in 
microarray imagery, as such, the input for the process 
is always going to be the raw image data. The ITE is 
the only component which has direct access to this 
raw data; its function being to supply this data both. 
unaltered and in various transformed and filtered 
views to the components as requested. For example, 
the view requested could be a simple summary such 
as providing the mean pixel intensity of the image, or 
a more complex image transformation and filtering 
technique. It is conceived that in this way 
components will not be restricted to one view of the 
data as is typical, but can benefit from a multitude of 
perspecti ves. 

After the ITE has acquired the raw imagery the 
tlrst components in the framework to be executed are 
those that make up the 'Structure Extrapolation' 
stage, which are designed to discover both the 
structure and composition of the image. The Image 
Layout component could use a variety of techniques 
to ascertain the general layout of the image surface; 
this constitutes the discovery of the gene blocks. One 
possible solution for this is to take an averaged cross
sectional view of the slide surface in the appropriate 
horizontal or vertical direction. Figure 3 shows two 
images with their corresponding horizontal profiles, 
where the light grey represents the image protile and 
the black line is generated using a combination of 
moving filters. This is a good example of how low 
pass fIlters can be applied in an attempt to improve 
the (subjectively measured) quality of the data for 
human or machine interpretability [15]. The left hand 
plot of figure 3 shows (he profile for what would be 
classified as a well printed 'good' slide, and from this 
it is relatively easy to distinguish the 12 block rows 
that exist in the slide (the peaks) and the inter-block 
gaps in-between (the valleys). 

. 

With the major areas of interest defined, (he 
Image Structure component then uses a similar 
process which is conducted with a finer granularity in 
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order to discover detailed structures. With 
microarrays we know that the slide should have a 
regularly repeating structure in each gene block and 
therefore this information can be used to help guide 
the block structure discovery. This compositional 
stage can either utilise the raw data or more 
beneficially, one of the alternate views as provided 
by the ITE service. 

The Copasetic Clustering (CC) method [14] 
facilitates the requirement of full-slide segmentation. 
Initially it arbitrarily divides up the image into 
spatially related areas (normally very small grid 
squares). Each of these areas are clustered using a 
standard technique such as k·means [11) or fuzzy c
means [16] and the result is stored. Then, 
representatives are calcUlated for each of the clusters 
that exist, and these are further clustered in the next 
generation, such a process is repeated until all of the 
sub-clustered groups have merged. The net result is 
every pixel will have been clustered into one of n 
groups, and this should be very close to clustering the 
whole image using a standard approach if such a 
process were possible. This technique gives the 
advantages of clustering while at the same time 
reducing (he processing and memory requirements to 
those feasible with modem desktop computing 
technology. 

From the structural information that has been 
determined, we can now start to identify objects of 
interest within the image; this constitutes grouping 
together all the pixels that form a gene spot. This is 
achieved by Spatial Binding which uses both the 
estimated gene centre position and the clustering 
results, to search and combine groups of pixels that 
fall within close proximity to each other. This 
process can be completed for the majority of the 
genes that were well defined and the information 
gained can be used to generate an average gene spot. 
This mask construct is required, as clustering will 
never guarantee that all pixels belonging to gene 
spots will be identitied correctly. One of the main 
strengths of CC is its transparency into the 
intermediate layers as illustrated in figure 4. Using 
this knowledge (when coupled with the average gene 



spot characteristics) we can move back through the 
historical clustering results until the criteria for the 
average gene spot have been satisfied. 

The final stage consists of components that could 
be thought of as the more conventional stages of 
microarray analysis. Here, using the structural 
information that has been identified and the raw 
image data, the genes on the microarray are analysed. 
Generally this consists of two stages, one of Post 
Processing (such as background correction) and a 
second of Final Analysis, a data reduction stage (such 
as converting Ihe values from all the pixels that make 
up a gene spot into one representative value) .. 

Experimental Results 

In this section, we compare the overall performance 
of the framework with that as determined by a 
commercially viable process as seen with the 
GenePix® package. During the development of the 
CA process a variety of components were 
implemented in the slots. Ultimately the framework 
will determine the appropriate component on a per 
slot basis, however, for this evaluation we choose 
components which were known to perform well. First 
of all we will look at CA's success in discovering the 
structural composition of the slides, including overall 

block structure: and gene spot locations. Then we will 
present a mea�ure of accuracy for the entire process 
which will allow us to compare our automated 
system with that of an expert human operator. 

It was initially envisioned that we would 
demonstrate the frameworks capability using two sets 
of disparately structured microarray images with 
varying quality (see figure 3). The left hand 
microarray image is typical of an industrially 
prepared slide where the genes are well defined and 
evenly printed, however there is minor meta-block 
drift and significant levels of background noise. This 
can be a challenge in itself when determining slide 
structure, but is made all the more interesting when 
larger anomalies are present (such as top left). The 
image on the light hand side of figure 3 is part of a 
calibration run on a bench top spotter device. In 
contrast to the previous image the gene spots and 
meta-blocks are poorly defined, with high levels of 
background noise throughout. These features mark 
the image as a good score card for algorithm 
development. These two images were chosen along 
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with several contemporise giving a total of ten 
images. 

Overall CA successfully processed the block 
layout of all slides, with no prior knowledge of their 
structure. Figure 5 shows a resultant structural 
analysis of an image where it can be seen that the 
master blocks have been clearly de tined even though 
there is misalignment throughout. 

Slide (e:ldat,\work'Jigmp2\DCJhinoJ05t� Grids 

Figure 5: Examples of master blocks 

The CA process was able to successfully 
determine the underlying structure of the previously 
determined blocks, even when these blocks contained 
large artefacts (figure 6a) or partial gene spot 
information (figure 6b). In this case the image 
contained enough structural" information for the CA 
process to discover the image's layout in a single 
pass. At present if this was not the case, the gene 
blocks could be rebuilt by the use of either 
successfully discovered gene blocks or by a similar 
experiments image (i.e. the second channel). 

.) Example block I b) Example block 2 

Figure 6: Examples of sub-block discovery 
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Figure 7: PSNR comparison between GenePix@andCA results. 

In order to quantify the performance capabilities 
of the automated CA framework against that of the 
human operator, a quality measure is also required 
which will allow the judgment of how well the 

·calculated templates fit the gene spot position. Both 
techniques produce a mask that c\assilies the pixels 
as belonging to either foreground (the gene spots) or 
background. By overlaying the mask with the 
original image a metric can be utilised to quantify the 
disparity that exists between the two groups of pixels. 
If the masks fit the genes closely there will be high 
separation between these groups, any misalignment 
between them will lead to a diminished separation 
value. 

There are many alternative metrics that can be 
used here; typically a preferred algorithm is the mean 
square error (MSE) which is dctined as: -

MSE= 
�]f(i,j)-F(i,j)t 

N2 
(I) 

wheref(i,j) represents the source or original imagery 
that contains NxN pixels and a mask image F(i,}). 
Error metrics are computed on the luminance signal 
such that pixel valucs f(iJ) range between black (0) 
and white (I ).There are, for [0; 255] grey scale 
images, two disadvantages of the MSE percentage as 
defined in equation I. Firstly the denominator is 
usually very large compared to the numerator, 
meaning that the reconstruction process's 
improvement reduces this numerator value. but this 
might not be observable. Second, the MSE metric is 
sensitive to the brightness of the original image. 
Therefore a more objective image quality 
measurement is known as the peak signal-to-noise 

ratio (PSNR) [17]. This metric is defined for NxN 
images with a [0, 1] or [0, 255] grey-scale range, in 
dB as:-

PSNR = 201oglO ( 1) 
(2) 

RMSE 

where the RMSE (root mean squared error) 
represents the norm of the difference between the 

original signal and the mask. The PSNR is the ratio 
of the mean squared difference between two images 
and the maximum mean squared difference that can 
exist between these. Therefore the higher the PSNR 
value, the more accurately the mask fits the raw 
imagery. For all images present the proposed 
framework gave more accurate results. 

From figure 7, we directly compare PSNR values 
determined by GenePix® and CA for the individual 
images and on average CA has shown a marked I -
3dB improvement. Essentially the CA process has 
consistently outperformed the human expert using 
GenePix® in terms of gene spot identification. 

Discussion & Future Work 
We have presented a novel data-driven 

framework that attempts to improve the full 
workflow process of microarray image analysis. 
Specitlcally, the framework consists of several 
components that process a microarray image from its 
raw 16bir scanned representation to the final log2 
ratios and related statistics without human 
intervention. Copasetic Analysis as detailed in figure 
2 offers the folIowing advantages over current 
implementations: Copasetic Clustering not only 

. generates historical information alIowing accurate 
image ·prediction, but also has the computational 
benefits of processing previously infeasible datasets; 
Image Layout and Image Structure perform blind 
grid alignment on the imagery; Spatial Binding 
reconstructs the determined grid cell positions with 
accurate spot profiles; Post Processing corrects for 
the background noise and Final Analysis computes 
final microarray statistics. In the experimental part of 
the paper we demonstrated the potential of Copasetic 
Analysis using direct comparisons between our 
proposed approach and a commercially accepted 
process (GenePix®) over the dataset. 
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In future, we would like to focus on enhancing 
the current implementations of the framework's 
component parts. For example the Image 
Transformatioll Engine's multi-view approach has 
proved to be beneficial in this initial testing; we are 
interested in exploring this component's potential in 
greater detail. Along with this, we intend to develop 



more sophisticated methods of slide structure 

reconstruction to further enhance the speed and 
reliability when processing particularly noisy slides. 
Finally an important step will be the biological 
validation of these results; to this end we plan to 
analyse images containing control spots and a high 
number of biological repeats. 
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